

アンカー・留付け製品

技術マニュアル

使用上の注意事項

- 1. このアンカー・留付け技術マニュアル(以下、技術マニュアルという。)で提供する技術データは、 現在の最先端技術および関連する欧州基準に準拠した各種実験、性能評価基準に基づき、得られた結果 から算出しています。
- 2. 欧州技術認証(以下、ETA という。)を取得しているアンカーについては、認証製品ごとに ETA アイコンを明示し、技術データは ETA に認証された内容に準拠しています。また ETA 技術データの補足として、ヒルティ社内データを追記し、その旨を表や注記にて明記しております。
- 3. ETA を取得していないアンカーで、この技術マニュアルに記載の製品技術データは、ETA 認証と同等に、現在の最先端技術および関連する欧州基準に準拠した各種実験、性能評価基準に基づいています。
- 4. 標準的な使用条件(耐震認証はオプション)での試験項目に加え、耐火、耐衝撃、耐疲労試験を実施しています。詳細は関連報告書を参照。
- 5. この技術マニュアルに記載しているデータや数値は、実験室またはその他の管理された条件下で、一般的に認められた試験方法により得られた値の平均となります。使用者は、現場の状況を十分把握・理解した上で、適切な施工方法の検討を行い、現場条件に最適な施工仕様・製品選定を、使用者の責任下において行ってください。ヒルティによるガイダンスやアドバイスは、一般的な用途を対象とするものであり、特殊な使用条件下での正しい製品選定は使用者の責任に委ねられるものです。
- 6. この技術マニュアルで提供する技術データは、記載の適用条件下のみ有効となります。現場の母材条件によって、性能を確認するための現場試験を実施してください。
- 7. この技術マニュアルで提供する技術データは、発行日現在のものであり、成長し続けるというヒルティの1つのポリシーにより、予告なく技術データや仕様などを変更する場合があります。
- 8. 建設材料や施工条件は、現場により様々です。アンカーを打設する母材が十分な性能を担保出来ないことが疑われる場合には、ヒルティテクニカルコンピテンスセンターまでご相談下さい。
- 9. 全ての製品は、ヒルティ発行の最新技術マニュアル・取扱説明書・設置条件・施工仕様などに従い、適正な用途・管理・適用下でご使用ください。
- 10. 全ての製品は、各国のヒルティ現地法人により製品供給、並びに技術サポート、アドバイスが行われています。
- 11. 正確な情報提供を行うための合理的な手段が取られていますが、エラーないということを保証するものではありません。また、ヒルティは、いかなる理由においても、製品または情報の使用よる、また、不適切な使用に起因する損害、紛失、出費に関して、直接的、間接的、偶発的、結果的な義務を負わないものとします。製品適合性、特定目的適合性の黙示的保証は、この限りではありません。

Hilti
Corporation
FL-9494
Schaan
Principality of Liechtenstein
www.hilti.group

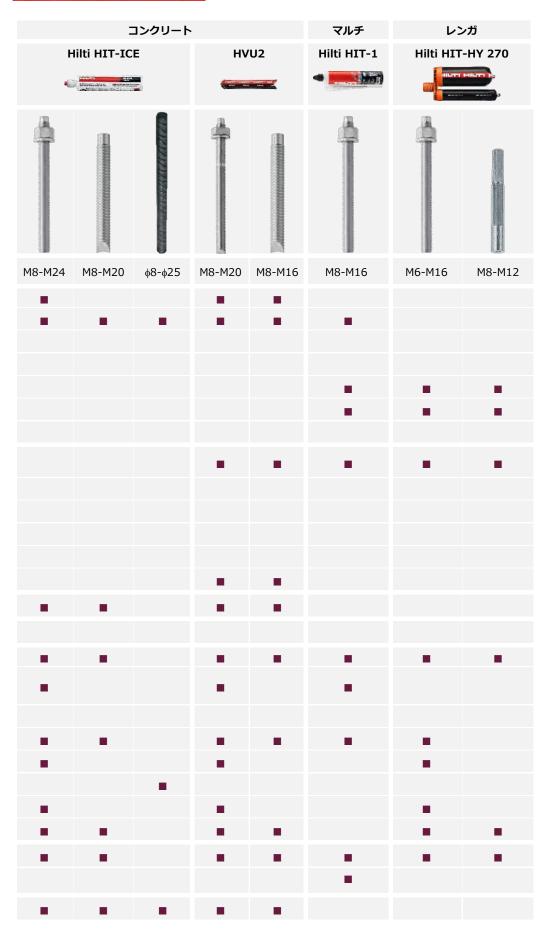
Hilti = registred trademark of the Hilti Corporation, Schaan

目次

アンカー選定表	1
耐火性能	6
アンカー耐食性能区分表	12
- 位金のマント	
接着系アンカーコンクリート	
HIT-RE 500 V3	1.4
	14
HIT-HY 200-A/R	38
HIT-ICE	63
HVU2	71
コンクリート・レンガなど	
HIT-1 / HIT-1 CE	83
レンガ・中空レンガ	
HIT-HY 270	95
金属系アンカー	
アンダーカットアンカー	
HDA	100
HSC-A (R), HSC-I (R)	113
拡張式アンカー	
HSL-3 (R)	123
HST3	137
HSA	147
ねじ固定式アンカー	
HUS3	156
HUS-H	189
HUS-HR	197

内部コーン打込み式アンカー	
HKD	203
HKV	209
プラスチック系アンカー	
HPS-1	213
HUD-1	216
HUD-L	222
HLD	226
はさみ固定式金属系アンカー	
HHD-S	231
断熱ファスナー	
IDP	233
付録	
アンカー設計	
あと施工アンカーの耐震 C1・C2 認証について	
リダンダント留付け	
dcut とは	

接着系アンカー選定表


アンカー分類(対象母材別)		コンクリート											
<i>y</i> .	ン/J 一/J 大泉 (xi 3ki 4y f0 がi)	Hilti	HIT-RE 50	0 V3		Hilti HIT-H	IY 200 A(R)						
		00	AND THE RESIDENCE OF THE PERSON OF THE PERSO		PHILIPS DOLLARS								
				A PARTIE DE LA PARTICIONAL DEL PARTICIONAL DE LA PARTICIONAL DE LA PARTICIONAL DE LA PARTICIONAL DEL PARTICIONAL DE LA P				ALVANO A SA S					
アン	ンカーサイズ	M8-M39	M8-M20	φ8-φ40	M8-M20	M8-M30	M8-M20	φ8-φ32					
母材条件	ひび割れ想定する ひび割れ想定しない 軽量骨材コンクリート ALC	:	:	:	:	:	:	:					
中	レンガ												
	中空母材												
	ドライウォール												
	欧州技術認証(ETA)												
	ETA 耐震認証 C1			-									
監察	ETA 耐震認証 C2												
ijne	耐疲労破壊*												
	耐衝撃*		-	-									
	耐火試験		-			•	•	•					
	feSet		•			•	•						
Cle	an-Tec												
	亜鉛めっき					•							
	溶融亜鉛めっき												
	ステンレス鋼 A2												
仕様	ステンレス鋼 A4												
4	高耐食性鋼												
	Rebar B500 B			-									
	外ねじ					•							
	内ねじ	•	•			•	-						
程 H	先付け設置	•			•	•	-						
妆	現場合わせ設置												
Pro	ofis 対応												

^{*}欧州ローカル認証

[▶] ETA 認証(鉄筋によるコンクリートへの留付け限定)

[□] ETA 認証(構造用鉄筋定着用途限定)EC2 に準拠

金属系アンカー選定表

	米アンガー選正衣	アンダーカット											
アン	カー分類			アンター)	ア <i>ン</i> ターカット ねじ固定式								
		拡底	式										
		HDA HSC		HUS3	HUS-H	HUS-HR HUS3-I Flee HUS-CR SC 6							
							30.0						
							The state of the s						
アン	カーサイズ	M10-M20	M6-M12	6-14	6	6-14	6						
	ひび割れ想定する												
	ひび割れ想定しない												
共	軽量骨材コンクリート												
母材条件	ALC					-							
母	レンガ					-							
	中空母材												
	ドライウォール												
リタ	ンダント留付け												
	欧州技術認証(ETA)	-		•	•	•							
	ETA 耐震認証 C1												
認証	ETA 耐震認証 C2												
ııın <u>ız</u>	耐疲労破壊*												
	耐衝擊*												
	耐火試験												
	亜鉛めっき												
	溶融亜鉛めっき	•		•									
仕様	ステンレス鋼 A2												
廿	ステンレス鋼 A4					-							
	高耐食性鋼												
	外ねじ												
	内ねじ												
施工	先付け設置												
摇	現場合わせ設置												
Pro	fis 対応												

^{*}欧州ローカル認証

	拡張式											
新	命付け方式			内部コー	ン打込み式		芯棒打込み式					
HSL-3	HST3	HSA	HKD	HKD REDUNDANT	нкv	HDI-P	HNI					
		The state of the s										
M8-M24	M8-M24	M6-M20	M6-M20	M6-M16	M6-M16	3/8"	M6-M16					
:	:			:		•	•					
						*						
	•											
	- 1											
_	_		_	_			•					
•	•	•	•	•								
		•				_						
					- :							
	- 1		_	-	_	_						

※穴あきハーフ PC

プラスチックアンカー選定表

	ステックア <i>フ</i> ガー選足衣 カー分類		軽量アンカー									
		HPS-1	HUD-1	HUD-L	HLD	HFP	IDP					
	カーサイズ 小トの呼び径)	M4-M8	M5-M14	M6-M10	M10	M4,5	M8					
	ひび割れ想定する											
	ひび割れ想定しない											
牛	軽量骨材コンクリート											
母材条件	ALC											
敬	レンガ											
	中空母材											
	ドライウォール				-							
リダ	ンダント留付け						-					
	欧州技術認証(ETA)											
	ETA 耐震認証 C1											
認	ETA 耐震認証 C2											
IIII	耐疲労破壊*											
	耐衝撃*											
	耐火試験											
	亜鉛めっき				-							
	溶融亜鉛めっき											
悉	ステンレス鋼 A2											
仕様	ステンレス鋼 A4											
	高耐食性鋼											
	外ねじ											
	内ねじ											
提 H	先付け設置					•						
相	現場合わせ設置											
Prof	is 対応											

[▶] 特定用途のみ

[□] ETA 認証(リダンダント留付け限定)

^{*}欧州ローカル認証

耐火性能

試験条件

断熱及び耐火被覆されてないひび割れ コンクリートを片面加熱。

複数面から加熱する場合には、はしあき> 300 mm とする。

湿潤コンクリートの場合には有効埋め 込み長さ(hef) +30 mとする。

ISO 標準加熱曲線

ISO 標準加熱曲線とも呼ばれる ISO 曲線(ISO 834)は、建築部材の性能評価試験に一般的に適用される熱応力です。

ZTV-ING 加熱曲線

ZTV-ING 曲線は、ドイツの交通用トンネルの設計の際に適用されます

接着系アンカー

アンカー	サイズ	hef	基準引	張耐力 N	IRk,s,fi	出展/No.	
7711-	אויע	[mm]	R30	R60	R90	R120	<u>ш</u> м/ 140.
ISO 83							
HIT-RE 500 V3 + HIT-V-5.8, HIT-V-8.8		ひび割れる					
	M8	80*	0,79	0,62	0,00	0,00	
	M10	90*	1,43	1,13	0,32	0,00	
	M12	110*	2,33	1,77	0,40	0,00	
	M16	125*	4,35	3,31	1,23	0,00	
	M20	170*	6,75	5,25	3,29	1,28	
The state of the s	M24	210*	9,75	7,58	5,40	3,96	
	M27	240*	12,8	9,90	7,05	5,63	Original Test Report:
	M30	270*	15,5	12,0	8,63	6,90	MFPA_GS-3.2/15-361-4
HIT-RE 500 V3 + HIT-V-R		ひび割れる	を想定する				
IIII V K	M8	80*	2,37	1,16	0,35	0,00	Data valid for steel failure
	M10	90*	4,50	2,00	0,85	0,11	
	M12	110*	5,43	2,63	1,14	0,23	
electric science entrance entrance (files	M16	125*	11,6	4,88	2,63	1,13	
	M20	170*	20,9	8,85	5,61	3,36	
	M24	210*	30,0	14,8	9,45	5,48	
	M27	240*	39,1	25,7	12,3	7,13	
	M30	270*	47,8	31,4	15,0	8,70	

77.4	サイズ	hef	基準引	張耐力 N	IRk,s,fi	[kN]	出展/No.
アンカー	ארע	[mm]	R30	R60	R90	R120	山放/ NO.
ISO 83							
HIT-HY 200-A +		ひび割れる	を想定する	るコンクリ	ノート		
HIT-V 5.8	M8	80*	1,20	0,45	0,24	0,17	
	M10	90*	2,00	0,75	0,40	0,28	
HILLITTE HILLITTE	M12	95*	3,00	0,96	0,50	0,36	
and the same of th	M16	110*	6,18	1,76	0,92	0,63	
V 500-V MB HU-W 300-V HS HU-W 500	M20	130*	9,70	3,50	1,80	1,18	
	M24	155*	14,0	8,00	4,00	2,53	
	M27	175*	18,3	12,5	6,20	3,90	
	M30	195*	22,3	17,9	10,7	6,60	Original Test Report:
HIT-HY 200-A +		ひび割れる				,	IBMB 3501/676/12
HIT-V 8.8 HIT-Z	M8	80*	1,64	0,45	0,24	0,17	15.15 5501, 6, 6, 12
	M10	90*	2,75	0.75	0.40	0.28	*For different
	M12	95*	3.40	0.75	0.50	0.36	
Pellatti pellatti	M16	110*	6,20	1,76	0,92	0,63	embedment depths hef
V 500-V - MED HULHU 300-V - MED MINHU 500-S	M20	130*	12,6	3,51	1,79	1,18	please see the full report
	M24	155*	23,6	8,00	4,00	2,53	
	M27	175*	30.9	16 67	8 30	5 19	Data valid for steel failure
	M30	195*	37,6	21,7	10,7	6,60	
HIT-HY 200-A		ひび割れる	を想定する	るコンクし	ノート		
+ HIT-V-R, HIT-Z-R	M8	80*	1,64	0,45	0,24	0,17	
	M10 M12	90* 95*	2,75 3,43	0,75 0,96	0,40 0,50	0,28 0,36	
HARLAND HARLAND	M16	110*	6,18	1,76	0,92	0,63	
	M20	130*	12,6	3,50	1,80	1,18	
A SOAM - MED HILLHAN STOOM - MED HILLHAN STO							
	M24 M27	155* 175*	29,7 <i>30,9</i>	8,00 16,7	4,00 8,30	2,53 5,20	
	M30	195*	71,9	21,7	10,7	6,60	
HVU2 + HAS 5.8	1122	ひび割れる				-,	
11102 1 1175 5.0	M8	80	0,00	0,00	0,00	0,00	Original Test Report:
France makes all of	M10	90	2,90	1,75	0,73	0,35	16056MR15542 TU Kaiserslautern
matio made made est	M12	110	4,22	3,20	1,87	0,99	I O Naisei Sidulei II
	M16	125	7,85	5,55	2,98	1,66	*For different threaded
	M20	170	12,2	9,30	6,37	4,40	rods please see the full report
	M24	210	17,6	13,4	9,18	6,35	·
	M27	240	22,9	17,4	11,9	8,26	Data valid for steel failure
	M30	270	28,0	21,3	14,6	10,1	

アンカー	サイズ	hef	基準引	張耐力 N	IRk,s,fi	[kN]	出展/No.
7 2/3	אויע	[mm]	R30	R60	R90	R120	Щ∕ №.
ISO 83	Original Test Report:						
HVU2 + HAS-R		ひび割れる	を想定する	16056MR15542			
	M8	80	0,00	0,00	0,00	0,00	TU Kaiserslautern
	M10	90	4,98	1,75	0,73	0,35	
PRODUCT PRODUCT CONTRACTOR CONTRA	M12	110	8,97	3,66	1,87	0,99	*For different threaded
	M16	125	12,8	5,55	2,98	1,66	
	M20	170	28,0	16,2	10,1	6,89	rods please see the full
No.	M24	210	40,4	28,3	16,3	10,2	report
	M27	240	52,5	36,8	21,1	13,3	
	M30	270	64,2	45,0	25,8	16,3	Data valid for steel failure
ZTV-	ING 加熱曲	線に沿った	試験実施				
HIT-HY 200-A +		ひび割れる	を想定する	るコンクリ	ノート		Original Test Report: GS
HCR steel	M8	≥ 80		0,	40		3.2/15-364-2
Bettlates Bettlates	M10	≥ 90		0,	70		Please notice that the data
	M12	≥110		•	25		is not for any failure
изора напинатурова на начитале	M16	≥125		3,			modes.
	M20	≥170		4,0	00		
HVU2 +		ひび割れる	を想定する				
HAS-E-HCR	M8 M10	80 90		1,: 1,:			Original Test Report:
PRATECT PRATECT SAME COM-	M10 M12	110		2,			GU-21804 Please notice that the
	M16	125		4,0			data is not for any failure
	M20	170		6,			modes.
	M24	210		8,	50		

金属系アンカー

アンカー サイズ 出展/No. [mm] R30 R60 R90 R120	
ISO 834 標準加熱曲線に沿った試験実施	
DA ひび割れを想定するコンクリート	
M10 - 4.5 2.2 1.3 1 Original Test Re	port:
M12 - 10 3.5 1.8 1.2 IBMB Braunschwe	eig UB
M16 - <i>15</i> 7 4 3 3039/8151	_
M20 - 25 9 7 5	
DA-F ひび割れを想定するコンクリート Warringtonfin	re
M10 - 45 22 13 1 W5 Parata 20	
M12 - 10 3.5 1.8 1.2	1101
45 7 4 0	tool
7Nが割れを根定するコンクリート	teei
M10 - 20 9 4 2	
M12 - 30 12 5 3	
M16 - <i>50</i> 15 7.5 6	
IU-PF ひび割れを想定するコンクリート ETA-14/006	9
M10 80 1.7 1.3 1.1 0.8 Data valid for s	steel
M12 100 3.1 2.4 2 1.6 failure.	
M16 125 3.1 2.4 2 1.6	
C-A ひび割れを想定するコンクリート	
M8 1.5 -	
M10 1.5 -	
M12 3.5 2 -	
C-AR ひび割れを想定するコンクリート	
M8 1.5 - Original Test Re	
UB 3177/1722	_
M12 3.5 3	
C-I ひび割れを想定するコンクリート Warringtonfii WF Report no 36	
M8 1.5 -	
M10 2.5 -	
M12 2 - M8 1.5 -	
SC-IR M10 2.5 -	
M12 3.5 3	
T-HCR ひび割れを想定するコンクリート Original Test Re	nort:
M8 - 1.3 2,30 2,70 1,0 ETA-98/001	•
M10 - 23 230 230 18	
M12 - 3 3,00 3,00 2,4 Warringtonfii	-e
M16 - 6.3 6,30 6,30 5,00 WF Report n	0

							ШR /N-
アンカー	サイズ	hef	基準 51	基準引張耐力 NRk,s,fi [kN]			出展/No.
		[mm]	R30	R60	R90	R120	
ISO 834							
HST3		ひび割れる	を想定する	3コンク!	リート		
	М8	47	0,90	0,80	0.70	0.60	
	M10	40	1,50	1,20	0.90	0.80	
Kee	M10	60	2,40	1,80	1,20	0,90	
	M12	50	2,30	1,70	1,10	0,80	Original Test Report:
	M12	70	5,00	3,70	2,10	1,30	IBMB Braunschweig UB
	M16	65	4,40	3,20	2,10	1,50	3039/8151
	M16	85	7,10	6,80	3,90	2,40	
	M20	101	9,10	9,10	6,00	3,80	Warringtonfire
	M24	125	12,6	12,6	8,70	5,40	
HST3-R		ひび割れる					WF Report no 364181
ārm.	М8	47	1,90	1,90	1,90	1,50	
	M10	40	2,30	2,30	2,30	1,80	Data valid for steel
Press	M10	60	3,00	3,00	3,00	2,40	failure.
	M12	50	3,20	3,20	3,20	2,50	
	M12	70	5,00	5,00	5,00	4,00	
	M16	65	4,70	4,70	4,70	3,80	
	M16	85	7,10	7,10	7,10	5,60	
	M20 M24	101 125	9,10 12,6	9,10 12,6	9,10 12,6	7,30 10,1	
HUS3-H	14124	ひび割れる				10,1	
11000 11	М6	55	1,50	1,20	0.80	0.70	
	M8	50	1,50	1,50	1.50	1.20	
arcerrari_[)	М8	60	2,30	2,30	1.60	1.20	
	M8	70	3,00	2,80	1.90	1.50	
HUS3-HF	M10	55	2,00	2,00	2.00	1.60	
	M10	75	4,00	4,00	3.20	2.50	Original Test Report:
	M10	85	4,90	4,70	3.20	2.50	ETA-13/1038
	M14	65	3,10	3,10	3.10	2.50	Warringtonfire
	M14	85	4,80	4,80	4.80	3.80	WF Report no 364181
	M14	115	7,80	7,80	5.50	4.30	Data valid for steel failure.
HUS3-C		ひび割れる					iallule.
	M6	55	1,50	1,20	0.80	0.70	
STILL A	M8	50	0,50	0,40	0.30	0.20	
	M10	55	1,20	1,00	0.80	0.60	
HUS3-A		ひび割れる					
HUS3-I	M6	55	1,50	1,20	0.80	0.70	
	М6	55	1,50	1,20	0.80	0.70	

アンカー	サイズ	hef	基準引	張耐力 N	IRk,s,fi	[kN]	出展/No.	
<i>F D11</i> —	ארע	[mm]	R30	R60	R90	R120		
ISO 834								
HUS3-I-Flex	JS3-I-Flex ひび割れを想定するコンクリート							
	М6	55	1,60	1,20	0,80	0,70		
HUS3-P	М6	55	1,60	1,20	0,80	0,70		
HUS3-PS	M6	55	1,60	1,20	0,80	0,70		
HUS3-PL	M6	55	1.60	1,20	0.80	0.70	Original Test Report:	
HUS HR	MO	ひび割れを				0.70	IBMB Braunschweig UB	
a	MC					1.00	3039/8151	
	M6 M8	55 60	1,30 1,50	1,30 1,50	1,30 1,50	1,00 1,20		
	M8	80	3,00	3,00	3,00	1,70	Warringtonfire	
	M10	70	2,30	2,30	2,30	1,70		
	M10	90	4,00	4,00	4,00	1,80	WF Report no 364181	
	M14	70	3,00	3,00	3,00	2,40		
	M14	110	6,30	6,30	6,30	5,00	Data valid for steel failure.	
HUS-CR	M6	55	0,20	0,20	0,20	0,10		
nus-ck	M8	60	0,80	0,60	0,50	0,40		
		80	0,80	0,60	0,50	0,40		
extratation (M8	70	1,40	1,10	0,90	0,80		
	M10 M10	90	1,40	1,10	0,90	0,80		
HKD_redundant	MIO	ひび割れを				2,22		
_	М6	25	0,50	0,50	0,50	0,20		
	M8	25	0,60	0,60	0,60	0,50	0:: 17 18	
	М8	30	0,90	0,90	0,90	0,70	Original Test Report: ETA-06/0047	
HKV	M8	40	1,30	1,30	1,30	0,70		
	M10	25	0,60	0,60	0,60	0,50	Warringtonfire WF Report no 364181	
	M10	30	0,90	0,90	0,90	0,7		
	M10	40	1,80	1,80	1,80	1,50		
HST3-R		ひび割れを	と想定する	るコンク	リート		Original Test Report:	
	MR	≥47		0,	60		GS 3.2/14-319-3	
	M10	≥40			1,05	Please notice that the data is		
The same of the sa	M12	≥50			75		not for any failure modes.	
	M16 M20	≥65 >117			60 50			
	MZU	≥117			50			
HST-HCR		ひび割れを	と想定する				Original Test Report:	
	M8	-			,00		GS 2101/679/16	
	M10	-			,50		Please notice that the data is	
	M12	-			.,00		not for any failure modes.	
	M16	-		≥ 4	,00			

アンカー耐食性能区分表

	アンカー	HSA HUS3 HST3 HIT-V	HUS3-HF	HSA-F HIT-V-F	HSA-R2	HUS3-HR HSA-R, HST3-R HIT-V-R HIT-Z-R	HST3-HCR
	被覆/材料	電気亜鉛めっき	多層コーティング	溶融亜鉛めっき 45-50 µm	A2 AISI 304	A4 AISI 316	高耐食性 e.g. 1.4529
環境条件	留付け部						
乾燥した屋内	(亜鉛めっき・塗装された) 鋼材、アルミニウム ステンレス鋼			•			
	(亜鉛めっき・塗装された) 鋼材、アルミニウム	_					
湿度の高い屋内	 ステンレス鋼 		_	-			
+0	(亜鉛めっき・塗装された) 鋼材、アルミニウム	_	*	_ *	*		
通常の屋外	 ステンレス鋼 		-	-			
1-10km	(亜鉛めっき・塗装された) 鋼材、アルミニウム	_	_ *	_ *	* *		
中程度腐食性の 屋外	 ステンレス鋼 		-	-	_ ^		•
0-1km 沿岸地帯	(亜鉛めっき・塗装された) 鋼材、アルミニウム ステンレス鋼	-	-	-	-		
産業による高 腐食性の屋外	(亜鉛めっき・塗装された) 鋼材、アルミニウム ステンレス鋼	-	-	-	-		
融雪剤が散布される道路に近接	(亜鉛めっき・塗装された) 鋼材、アルミニウム ステンレス鋼	-	-	-	_		
特殊用途	-		ヒルティ!	旦当者にご相談	 炎ください		

^{■ =} これらの耐用年数は、建物の耐用年数に基づく所定の環境での使用を満たす。ETA 認証によるコンクリート用アンカーの耐用年数は 50 年である。

ステンレス鋼等級の選定は、DIBt Z.30.3-6 (April 2009) や 米国における KB-TZ アンカーのための ICC-ES 評価報告書 (e.g. ESR-1917, May 2013) など、国ごとの技術認証による。しかしながら、この材料によるアンカーの屋外環境での使用は、現在、耐用年数 50 年として乾燥した屋内環境で使用する電気亜鉛めっき炭素鋼、または、A2 等級ステンレス鋼とする欧州技術認証 (ETA) ではカバーされていない。

⁼ これらの環境下でのステンレス鋼ではないアンカーの耐用年数は、25 年以下に低減される。それ以上長い耐用年数の設定については、適切な検証により評価を行う。

⁼ この材料によるアンカーは、指定の環境下での使用に適さない。例外の場合は、適切な検証により評価を行う。

^{* =} 技術的観点により、HDG/duplex 被覆とA2/304 材は、所定の耐用年数・限定された用途として屋外使用に適する。 これは ISO 9224:2012 (corrosivity categories, C-classes)による Zn 腐食率による材料の長期使用経験に基づくものである。

環境による分類

使用できる用途は、下記の要因を考慮した様々な環境により分類されている。

屋内使用による用途

乾燥した屋内環境

(暖房された または 空調された室内) 結露なし、オフィスビル、学校など

一時的に結露が発生する屋内環境

(腐食の影響を受けない暖房のない室内) 物置小屋など

屋外使用による用途

腐食の影響が少ない屋外、田園または都市環境

海からの距離 10km 以上

中程度の腐食性環境または海水による塩害のある屋外、田園または都市環境

海からの距離 1~10 km 以内

沿岸地帯

海からの距離 1 km 以内

産業などによる腐食性のある屋外環境

プラントから 1 km 以内 (石油化学、石炭産業など)

融雪剤が散布される道路に近接

道路からの距離 10 m 以内

屋外使用による用途

特殊な環境

特別腐食性の高い場所、融雪剤を使うトンネル道路、スイミングプールの屋内、化学系産業の特定 用途 (例外含む)

重要なお知らせ

要件を満たす防食方法の選定は、設計者の責任において最終判断と決定がされるべきであり、ヒルティは使用用途に対する製品の適合性に関して一切の責任を負わない。上表は、代表的な使用用途の平均耐用年数であり、亜鉛めっき処理などの金属被覆による耐用年数は、製品の大部分で赤錆が見て分かり、構造が低下するほど広がっているのを目安としたもので、初期腐食がより早く発生する。

国ごとの基準または国際基準、規格、規準、企業と(または)産業ガイドラインは、個別に考慮、評価しなければならない。本ガイドラインは大気腐食にのみ適用され、隙間腐食や水素助長割れなどの特殊なタイプの腐食は個別に評価しなければならない。

本技術マニュアルに記載された表は、典型的な大気環境で共通に適用される使用用途のための一般的なガイドラインである。

特殊な用途への適用は、下記などの限局状況に大きい影響を受ける。

高い温度と湿度;高濃度大気汚染物質;化学的処理をした木材・下水・コンクリート添加剤・洗浄剤など腐食性の製品との接触; 土、停滞水との接触;電流;異種金属との接触;隙間などの狭い空間;物理的損傷または摩耗;異なる影響要因の組み合わせによる極度な腐食;濃縮汚染物質

HIT-RE 500 V3 接着系注入方式アンカ・

接着系注入方式アンカーシステム

Hilti HIT-RE500 V3

アンカーボルト

HIT-V(炭素鋼)

HIT-V-R(ステンレス鋼)

(M8-M39):

HIT-V-F

HIT-V-HCR

(M8-M20):

HIS-N,(炭素鋼)

HIS-RN (ステンレス鋼)

フォイルパック 330ml (500ml,1400 ml あり) -SAFESet (セーフセット工法) ヒルティのホロードリルビット穿 孔と同時に吸塵する工法とダイヤモ ンドコア用目荒らしツールの使用 により施工安定性と高耐力を可能

-ひび割れを想定しない又はひび割 れを想定するコンクリート C20/25 - C50/60 に適用

- ETA 耐震性能 C1, C2^{a)}認証

- 高耐力

特徴

- 乾燥、湿潤、冠水コンクリートに 適用

- 水中施工可能(標準外施工)

内ねじアンカースリーブ - 高い耐腐食性能

- 高温時でも長い可使時間

- 母材温度 -5°C で使用可能

- 無臭エポキシ樹脂

a) C2 認証は HIT-V ボルトのみ認証

母材 施工条件

ひび割れを想定した ひび割れを想定する

コンクリート コンクリート

ハンマー ドリル穿孔

ダイヤモンド コア穿孔

CE 適合

ヒルティ セーフセット 工法

SAFE: ET

狭いへりあきと アンカーピッチ

埋込み長の 変化に対応

HCR

荷重条件

その他

静的/準静的

耐震性能

ETA-C1, C2a)

耐火性

ETA

PROFIS アンカー設計 ソフト対応

Α4 316

highMo

HCR 耐腐食 高耐腐食 b)

a) C2 認証は HIT-V ボルトのみ認証

認証 / 証明書

種類	機関 / 研究所	No. / 発行年月日
ETA 欧州技術認証 ^{a)}	CSTB	ETA-16/0143 / 2017-07-12
民間防衛施設における耐衝撃性	Federal Office for Civil Protection,	BZS D 16-601/ 2016-08-31
耐火試験報告書 b)	MFPA Leipzig	GS 3.2/15-361-4 / 2016-08-04

- 本章における全てのデータは ETA 欧州技術認証 ETA-16/0143, issue 2017-07-12.に基づいています。
- 耐火試験報告書は HIT-V ボルトのみ適用です。

静的または準静的耐力 (単体アンカーでの留付け)

本項の全ての数値は下記条件の場合に適用されます。

- 正しく施工されていること(施工手順書参照)
- へりあき、アンカーピッチの影響なし
- 下表斜字数値は鋼材破壊値
- HIT-V アンカーボルトは強度区分 5.8、8.8、HIS-N 内ねじスリーブは強度区分 8.8
- 基準母材厚・基準有孔埋込み長は表による
- コンクリート圧縮強度 (C 20/25): fck,cube = 25 N/mm² (JIS 規格コンクリート圧縮強度 Fc≒21N/mm²相当)
- 使用温度範囲 I (最小:母材温度 -40°C、最大:(長期) +24°C、(短期) +40°C)
- 施工時温度:-5℃~+40℃

有効埋込み長^{a)}と母材厚

アンカーサイズ			ETA-	-16/01	43, (2	017-07	7-12 発	行)		ヒルティ社内データ			
7 23 9 12		M8	M10	M12	M16	M20	M24	M27	M30	M33	M36	M39	
HIT-V アンカーボルト													
有効埋込み長	[mm]	80	90	110	125	170	210	240	270	300	330	360	
母材厚	[mm]	110	120	140	161	214	266	300	340	374	410	444	
HIS-N アンカースリーブ													
有効埋込み長	[mm]	90	110	125	170	205	-	-	-	-	-	-	
母材厚	[mm]	120	150	170	230	270	-	-	-	-	-	-	

a) 埋込み長の許容範囲は施工条件詳細に記載。

ハンマードリル穿孔、ホロービット¹⁾ 穿孔、ダイヤモンドコア+目荒らし(ラフニング) ツール²⁾穿孔:

基準耐力

		_11			ETA	-16/01	43, (2	2017-07	7-12 発	行)		ヒルテ	イ社内	データ
アンカー	-サイス	ζ		M8	M10	M12	M16	M20	M24	M27	M30	M33	M36	M39
ひび割れ	を想え		•											
		HIT-V 5.8		18,0	29,0	42,0	70,6	111,	153,	187,	224,	262,4	302,7	344,9
		HIT-V 8.8		29,0	43,1	58,3	70,6	111,	153,	187,	224,	262,4	302,7	344,9
引張	N_{Rk}	HIT-V-R [k	N]	26,0	41,0	58,3	70,6	111,	153,	187,	224,	262,4	302,7	344,9
		HIT-V-HCR		29,0	43,1	58,3	70,6	111,	153,	187,	224,	262,4	302,7	334,9
		HIS-N 8.8		25,0	46,0	67,0	111,	116,	ı	ı	-	-	ı	-
		HIT-V 5.8		9,0	15,0	21,0	39,0	61,0	88,0	115,	140,	174,0	204,0	244,0
		HIT-V 8.8,		15,0	23,0	34,0	63,0	98,0	141,	184,	224,	278,0	327,0	390,0
せん断	V_{Rk}	HIT-V-R [k	N]	13,0	20,0	30,0	55,0	86,0	124,	115,	140,	174,0	204,0	244,0
		HIT-V-HCR		15,0	23,0	34,0	63,0	98,0	124,	161,	196,	174,0	204,0	244,0
		HIS-N 8.8		13,0	23,0	34,0	63,0	58,0	-	-	-	-	-	-
ひび割れ	を想え	全するコンクリート												
		HIT-V 5.8		13,1	21,2	33,2	50,3	79,8	109,	133,	159,	-	-	-
		HIT-V 8.8		13,1	21,2	33,2	50,3	79,8	109,	133,	159,	-	-	-
引張	N_{Rk}	HIT-V-R [k	N]	13,1	21,2	33,2	50,3	79,8	109,	133,	159,	-	-	-
		HIT-V-HCR		13,1	21,2	33,2	50,3	79,8	109,	113,	159,	-	-	-
		HIS-N 8.8		25,0	41,5	50,3	79,8	105,	-	-	-	-	-	-
		HIT-V 5.8		9,0	15,0	21,0	39,0	61,0	88,0	115,	140,	-	-	-
		HIT-V 8.8		15,0	23,0	34,0	63,0	98,0	141,	184,	224,			
せん断	V_{Rk}	HIT-V-R [k	N]	13,0	20,0	30,0	55,0	86,0	124,	115,	140,	-	-	-
		HIT-V-HCR		15,0	23,0	34,0	63,0	98,0	124,	161,	196,	-	-	-
		HIS-N 8.8		13,0	23,0	34,0	63,0	58,0	-	-	-	-	-	-

- 1) ヒルティホロービット: M12~M30.
- 2) 目荒らし(ラフニング)ツール: M16~M30.

設計耐力

アンカー	-Hイ ⁻	7"			ETA-	16/014	13, (2	2017-0	7-12	(行)		ヒルテ	イ社内	データ
				M8	M10	M12	M16	M20	M24	M27	M30	M33	M36	M39
ひび割れ	を想象	をしないコンクリート												
		HIT-V 5.8		12,0	19,3	28,0	47,1	74,6	102,	125,	149,	145,8	168,2	191,6
		HIT-V 8.8	•	19,3	28,7	38,8	47,1	74,6	102,	125,	149,	145,8	168,2	191,6
引張	N_{Rk}	HIT-V-R	[kN]	13,9	21,9	31,6	47,1	74,6	102,	80,4	98,3	121,3	143,0	170,6
		HIT-V-HCR		19,3	28,7	38,8	47,1	74,6	102,	125,	149,	144,6	168,2	191,6
		HIS-N 8.8		16,7	30,7	44,7	74,6	77,3	-	-	-	-	-	-
		HIT-V 5.8		7,2	12,0	16,8	31,2	48,8	70,4	92,0	112,	139,2	163,2	195,2
		HIT-V 8.8		12,0	18,4	27,2	50,4	78,4	112,	147,	179,	222,4	261,6	312,0
せん断	V_{Rk}	HIT-V-R	[kN]	8,3	12,8	19,2	35,3	55,4	79,5	48,3	58,8	73,1	85,7	102,5
		HIT-V-HCR		12,0	18,4	27,2	50,4	78,4	70,9	92,0	112,	87,0	102,0	122,0
		HIS-N 8.8	•	10,4	18,4	27,2	50,4	46,4	-	-	-	-	-	-
ひび割れ	を想え	 主するコンクリート												
		HIT-V 5.8		8,7	14,1	22,1	33,5	53,2	73,0	89,2	106,	-	-	-
		HIT-V 8.8		8,7	14,1	22,1	33,5	53,2	73,0	89,2	106,	-	-	-
引張	N_{Rk}	HIT-V-R	[kN]	8,7	14,1	22,1	35,5	53,2	73,0	80,4	98,3	-	-	-
		HIT-V-HCR		8,7	14,1	22,1	33,5	53,2	73,0	89,2	106,	-	-	-
		HIS-N 8.8		16,7	27,7	33,5	53,2	70,4	-	•	•	-	•	-
		HIT-V 5.8		7,2	12,0	16,8	31,2	48,8	70,4	92,0	112,	-	-	-
		HIT-V 8.8		12,0	18,4	27,2	50,4	78,4	112,	147,	179,	-	•	-
せん断	V_{Rk}	HIT-V-R	[kN]	8,3	12,8	19,2	35,3	55,1	79,5	48,3	58,8	-	-	-
		HIT-V-HCR	:	12,0	18,4	27,2	50,4	78,4	70,9	92,0	112,	-	-	-
		HIS-N 8.8		10,4	18,4	27,2	50,4	46,4	-	-	-	-	•	-

- 1) ヒルティホロービット: M12~M30.
- 2) 目荒らし (ラフニング) ツール: M16~M30.

許容安全荷重 a)

アンカー	-++イフ	j"			ETA-	16/014	13, (2	2017-0	7-12	行)		ヒルテ	イ社内	データ
アンガー	917	`		M8	M10	M12	M16	M20	M24	M27	M30	M33	M36	M39
ひび割れ	を想定	Eしないコンクリー	\											
		HIT-V 5.8		8,6	13,8	20,0	33,6	53,3	73,2	89,4	106,7	104,1	120,1	136,9
引張	N_{Rk}	HIT-V-R	[kN]	9,9	15,7	22,5	33,6	53,3	73,2	57,4	70,2	86,7	102,1	121,9
אנונ	INKK	HIT-V-HCR	[KIN]	13,8	20,5	27,7	33,6	53,3	73,2	89,4	106,7	103,3	120,1	136,9
		HIS-N 8.8	•	16,7	30,7	44,7	74,6	77,3	-	-	-	-	-	-
		HIT-V 5.8		5,1	8,6	12,0	22,3	34,9	50,3	65,7	80,0	99,4	116,6	139,4
せん断	V_{Rk}	HIT-V-R	[LVI]	6,0	9,2	13,7	25,2	39,4	56,8	34,5	42,0	52,2	61,2	73,2
C/U#/I	V RK	HIT-V-HCR	[kN]	8,6	13,1	19,4	36,0	56,0	50,6	65,7	80,0	62,1	72,9	87,1
		HIS-N 8.8	•	10,4	18,4	27,2	50,4	46,4		-	-	-	-	-
ひび割れ	を想定	ミするコンクリート												
		HIT-V 5.8		6,2	10,1	15,8	23,9	38,0	52,2	63,7	76,1	-	-	-
引張	N_{Rk}	HIT-V-R	[kN]	6,2	10,1	15,8	23,9	38,0	52,2	57,4	70,2	-		-
אונוני	INKK	HIT-V-HCR	[KIN]	6,2	10,1	15,8	23,9	38,0	52,2	63,7	76,1	-	-	-
		HIS-N	•	16,7	27,7	33,5	53,2	70,4	-	-	-	-	-	-
		HIT-V 5.8		5,1	8,6	12,0	22,3	34,9	50,3	65,7	80,0	-	-	-
せん断	V_{Rk}	HIT-V-R	[kN]	6,0	9,2	13,7	25,2	39,4	56,8	34,5	42,0	-	-	-
C/UE/I	v KK	HIT-V-HCR	[KIN]	8,6	13,1	19,4	36,0	56,0	56,0	65,7	80,0	-	-	-
	3 A 15 XL	HIS-N 8.8		10,4	18,4	27,2	50,4	46,4	-	- -	-	-	-	-

a) 部分安全係数は $\gamma=1,4$ です。この部分安全係数は荷重の種類によって異なるため、各国の基準を採用してください。

ダイヤモンドコア穿孔 a):

基準耐力

アンカー	-サイス	ζ		M8	M10	M12	M16	M20	M24	M27	M30
ひび割れ	(を想)	きしないコンクリー	ト								
引張	N_{Rk}	HIT-V 5.8	— [kN]	18,0	29,0	42,0	70,6	111,9	153,7	187,8	224,0
אנוכ	INKK	HIT-V 8.8	— [KIN]	24,1	33,9	49,8	70,6	111,9	153,7	187,8	224,0
せん断	V_{Rk}	HIT-V 5.8	[[A]]	9,0	15,0	21,0	39,0	61,0	88,0	115,0	140,0
	V Rk	HIT-V 8.8	— [kN]	15,0	23,0	34,0	63,0	98,0	141,0	184,0	224,0

a) HIS-N スリーブの目荒らしなしのダイアモンドコア穿孔のデータなし

設計耐力

アンカ-	ーサイ	ズ		M8	M10	M12	M16	M20	M24	M27	M30
ひび割れ	hを想	定しないコンクリー	-ト								
引張	N_{Rk}	HIT-V 5.8	— [kN]	12,0	18,8	27,6	33,6	53,3	73,2	89,4	106,7
אונונ	INKK	HIT-V 8.8	[KIN]	13,4	18,8	27,6	33,6	53,3	73,2	89,4	106,7
せん断	V_{Rk}	HIT-V 5.8	— [kN]	7,2	12,0	16,8	31,2	48,8	70,4	92,0	112,0
ピ /0的	V RK	HIT-V 8.8	— [KIN]	12,0	18,4	27,2	50,4	78,4	112,8	147,2	179,2

a) HIS-N スリーブの目荒らしなしのダイアモンドコア穿孔のデータなし

許容安全荷重 b)

アンカー	ーサイズ		M8	M10	M12	M16	M20	M24	M27	M30
ひび割れ	1を想定しないコンクリ	ノート								
引張	N _{Rk} HIT-V 5.8	[kN]	8,6	13,5	19,7	24,0	38,1	52,3	63,9	76,2
せん断	V _{Rk} HIT-V 5.8	[kN]	5,1	8,6	12,0	22,3	34,9	50,3	65,7	80,0

a) HIS-N スリーブの目荒らしなしのダイアモンドコア穿孔のデータなし

b) 部分安全係数はγ = 1,4 です。この部分安全係数は荷重の種類によって異なるため、各国の基準を採用してください。

耐震性能 (単体アンカーでの留付け)

本項の全ての数値は下記条件の場合に適用されます。

- 正しく施工されていること(施工手順参照)
- へりあき、アンカーピッチの影響なし
- 下表斜字数値 は鋼材破壊値
- HIT-V ボルトは強度区分 5.8、8.8
- 母材厚、基準有孔埋込み長は表による
- コンクリート圧縮強度(C 20/25): fck,cube = 25 N/mm²(JIS 規格のコンクリート圧縮強度 Fc≒21N/mm²相当)
- 使用温度範囲 I (最小:母材温度 -40°C、最大:(長期) +24°C、(短期) +40°C)
- α_{gap}=1,0 (充填セット使用時)

耐震 C2 a) 認証・ C1 認証における 有効埋込み長と母材厚

アンカーサイズ		M8	M10	M12	M16	M20	M24	M27	M30
HIT-V ボルト									
有効埋込み長	[mm]	80	90	110	125	170	210	240	270
母材厚	[mm]	110	120	140	165	220	270	300	340
HIS-N スリーブ									
有効埋込み長	[mm]	90	110	125	170	205	-	-	-
母材厚	[mm]	120	146	169	226	269	-	-	-

a) C2 認証は HIT-V ボルトのみ認証

ハンマードリル穿孔、ホロービット穿孔、ダイヤモンドコア+目荒らし(ラフニング)ツール穿孔:

耐震 C2 認証における 基準耐力 (充填セット使用時)

アンカー	-サイズ		M8	M10	M12	M16	M20	M24	M27	M30
引張	N _{Rk} HIT-V 8.8	[kN]	-	ı	ı	34,6	57,7	80,8	-	-
せん断	HIT-V 8.8	[LAI]	-	-	-	46,0	77,0	103,0	-	-
ピル町	V _{Rk} HIT-V-F 8.8	—— [kN]	-	ı	-	30,0	46,0	66,0	-	-

耐震 C2 認証における 設計耐力 (充填セット使用時)

アンカー	-サイズ		M8	M10	M12	M16	M20	M24	M27	M30
引張	N _{Rk} HIT-V 8.8	[kN]	-	ı	-	23,0	38,5	53,8	ı	-
せん断	HIT-V 8.8	[LAI]	-	-	-	36,8	61,6	82,4	-	-
	V _{Rk} HIT-V-F 8.8	—— [kN]	-	-	-	24,0	36,8	52,8	-	-

ハンマードリル穿孔、ホロービット穿孔の場合:

耐震 C1 認証における 基準耐力

アンカー	-サイ	ズ		M8	M10	M12	M16	M20	M24	M27	M30
引張	NI	HIT-V 8.8,	[kN]	12,1	19,8	32,8	42,8	67,8	93,1	113,8	135,8
אנוכ	N_{Rk}	HIS-N 8.8	[KIN]	25,0	35,3	42,8	67,8	89,8	ı	-	-
せん断	\/	HIT-V 8.8,	[kN]	15,0	23,0	34,0	63,0	98,0	141,0	184,0	224,0
	V_{Rk}	HIS-N 8.8	— [KIN]	9,0	16,0	24,0	44,0	41,0	ı	ı	-

耐震 C1 認証における 設計耐力

アンカー	ーサイズ		M8	M10	M12	M16	M20	M24	M27	M30
引張	N _{Rk} HIT-V 8.8,	[kN]	8,0	13,2	21,8	28,5	45,2	62,1	75,9	90,5
אנוכ	HIS-N 8.8	[KIN]	16,7	23,5	28,5	45,2	59,9	-	1	-
せん断	HIT-V 8.8,	[kN]	12,0	18,4	27,2	50,4	78,4	112,8	147,2	179,2
色が断	V _{Rk} HIS-N 8.8	[KIN]	7,2	12,8	19,2	35,2	32,8	-	-	-

材料

HIT-V ボルトの機械的特性

アンカーサイフ	アンカーサイズ			ETA-16/0143, (2017-07-12 発行) ヒルティ社内データ										
アンカージャン	`		M8	M10	M12	M16	M20	M24	M27	M30	M33	M36	M39	
	HIT-V 5.8(F)		500	500	500	500	500	500	500	500	500	500	500	
引張強度 fuk	HIT-V 8.8(F)	[N]/mm 21	800	800	800	800	800	800	800	800	800	800	800	
つり放出及 luk	HIT-V-R	[N/mm²]	700	700	700	700	700	700	500	500	500	500	500	
HIT-V-HCR			800	800	800	800	800	700	700	700	500	500	500	
	HIT-V 5.8(F)		400	400	400	400	400	400	400	400	400	400	400	
降伏点強度 fyk	HIT-V 8.8(F)	[N/mm²]	640	640	640	640	640	640	640	640	640	640	640	
阵化点强反 lyk	HIT-V-R	[IN/IIIII-]	450	450	450	450	450	450	210	210	210	210	210	
	HIT-V-HCR		640	640	640	640	640	400	400	400	250	250	250	
応力断面積 As	HIT-V	[mm²]	36,6	58,0	84,3	157	245	353	459	561	694	817	976	
断面係数 W	HIT-V	[mm³]	31,2	62,3	109	277	541	935	1387	1874	2579	3294	4301	

HIS-N スリーブの機械的特性

アンカーサイス	p'			ETA-16/01	43, (2017-07	-12 発行)	
アンカージャン	773-947			M10	M12	M16	M20
	HIS-N		490	490	460	460	460
引張強度 fuk	Screw 8.8	[N]/mm 21	800	800	800	800	800
りが対象 luk	HIS-RN	[N/mm²]	700	700	700	700	700
	Screw A4-70		700	700	700	700	700
	HIS-N	- - [N/mm²] -	410	410	375	375	375
收件占没度 f	Screw 8.8		640	640	640	640	640
降伏点強度 fyk	HIS-RN		350	350	350	350	350
	Screw A4-70		450	450	450	450	450
応力断面積 A。	HIS-(R)N	[mm2]	51,5	108,0	169,1	256,1	237,6
ル心ノノ四川田伊 As	Screw	[mm²]	36,6	58	84,3	157	245
断面係数 W	HIS-(R)N	[mm3]	145	430	840	1595	1543
四田市女X VV	Screw	[mm³]	31,2	62,3	109	277	541

HIT-V ボルトの材料特性

部材	材質							
亜鉛めっき鋼								
全ねじボルト	鱼度区分 5.8、破断伸び A5 > 8% 延性							
HIT-V 5.8 (F)	電気亜鉛めっき 5μm 以上、 (F) 溶融亜鉛めっき 45 μm 以上							
全ねじボルト	強度区分 8.8、破断伸び A5 > 12% 延性							
HIT-V 8.8 (F)	電気亜鉛めっき 5μm 以上、 (F) 溶融亜鉛めっき 45 μm 以上							
ワッシャー	電気亜鉛めっき 5μm 以上、 溶融亜鉛めっき 45 μm 以上							
ナット	ナットの強度区分は全ねじボルトの強度区分と同等							
	電気亜鉛めっき 5μm 以上、 溶融亜鉛めっき 45 μm 以上							
ステンレス鋼								
^ do 1,, -1,, 11	強度区分 70(M24 以下)、強度区分 50(M27 以上)							
全ねじボルト HIT-V-R	破断伸び A5 > 8% 延性							
	ステンレス鋼 EN: 1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362							
ワッシャー	ステンレス鋼 EN: 1.4401, 1.4404, 1.4578, 1.4571, 1.4439, 1.4362 EN 10088-1:2014							
ナット	ステンレス鋼 EN: 1.4401, 1.4404, 1.4578, 1.4571, 1.4439, 1.4362							
	EN 10088-1:2014							
高耐食性合金	70557 (see (see NT) - 70557 (see NT)							
 全ねじボルト	強度区分 80(M20 以下)、強度区分 70(M22 以上)							
HIT-V-HCR	破断伸び A5 > 8% 延性							
	高耐食性合金 EN: 1.4529; 1.4565;							
ワッシャー	高耐食性合金 EN: 1.4529, 1.4565 EN 10088-1:2014							
ナット	高耐食性合金 EN: 1.4529, 1.4565 EN 10088-1:2014							

HIT-N スリーブの材料特性

部材		材質					
	内ねじアンカー	炭素鋼 EN:1.0718					
HIS-N	スリーブ	電気亜鉛めっき 5 µm 以上					
1110-11	ねじボルト 8.8	強度区分 8.8、破断伸び A5 > 8% 延性					
14U/IVV N 8.8		電気亜鉛めっき 5 µm 以上					
	内ねじアンカー	ステンレス鋼 EN: 1.4401,1.4571					
HIS-RN	スリーブ	入					
I IIO-KIN	ねじボルト 70	強度区分 70、破断伸び A5 > 8%					
	100/1001 70	ステンレス鋼 EN: 1.4401; 1.4404, 1.4578; 1.4571; 1.4439; 1.4362					

施工条件

施工母材温度範囲 -5°C∼+40°C

使用温度範囲

HIT-RE500 V3 注入方式アンカーは以下の 温度範囲にて適用されます。 母材温度の上昇により、設計付着強度が低下する場合があります。

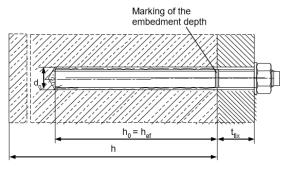
温度範囲	母材温度	長期最大母材温度	短期最大母材温度
温度範囲 I	-40 °C ∼+40 °C	+24 °C	+40 °C
温度範囲 II	-40 °C ∼+70 °C	+43 °C	+70 °C

短期最大母材温度

一日程度の短いサイクルの気温の変化に伴って、母材温度が変化するときの最大母材温度を指します。

長期最大母材温度

長期間にわたる継続的な気温変化に伴って、母材温度が変化するときの最大母材温度を指します。

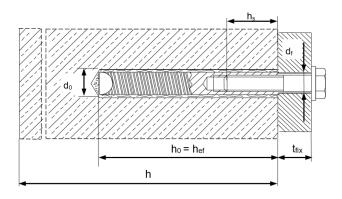

ゲル状時間、硬化時間

母材温度	最大ゲル状時間	最小硬化時間
· 5 P3 mile	t _{work}	t _{cure} 1)
-5 °C ~ -1 °C	2 h	168 h
0 °C ~ 4 °C	2 h	48 h
5 °C ~ 9 °C	2 h	24 h
10 °C ~ 14 °C	1,5 h	16 h
15 °C ~ 19 °C	1 h	12 h
20 °C ~ 24 °C	30 min	7 h
25 °C ~ 29 °C	20 min	6 h
30 °C ~ 34 °C	15 min	5 h
35 °C ~ 39 °C	12 min	4,5 h
40 °C	10 min	4 h

¹⁾ 硬化時間は乾燥コンクリートに適用します。湿潤コンクリートの場合には2倍の硬化時間が必要です。

HIT-V ボルト 施工条件詳細

アンカーサイズ				ETA	-16/01	43, (2	2017-07	7-12 発	行)		ヒルテ	イ社内ラ	データ		
7 2 2 3 1 2			M8	M10	M12	M16	M20	M24	M27	M30	M33	M36	M39		
穿孔径(ビット呼び径)	d_0	[mm]	10	12	14	18	22	28	30	35	37	40	42		
有効埋込み長と穿孔長 a)	h _{ef,min}	[mm]	60	60	70	80	90	96	108	120	132	144	156		
日州全区の民亡牙11民	h _{ef,max}	[mm]	160	200	240	320	400	480	540	600	660	720	780		
最小母材厚	h_{min}	[mm]	h _e ≥	f +30 m 100 m	im m				h _{ef} +	2 d ₀					
最大留付けトルク	T _{max}	[Nm]	10	20	40	80	150	200	270	300	330	360	390		
最小アンカーピッチ	Smin	[mm]	40	50	60	75	90	115	120	140	165	180	195		
最小へりあき寸法	C _{min}	[mm]	40	45	45	50	55	60	75	80	165	180	195		
割裂破壊による	C	[mm]		2 c _{cr,sp}											
基準アンカーピッチ	S _{cr,sp}	[mm]						Z Ccr,sp							
割裂破壊による			1,0) ∙ h _{ef}	f	or h / h	_{ef} ≥ 2,0		2,0						
基準ヘリあき寸法り	C _{cr,sp}	[mm]	4,6 h	_{ef} - 1,8 l	n for 2	2,0 > h	/ h _{ef} >	1,3	1,3		1				
金中 (76)と 7点			2,2	26 h _{ef}	f	or h / h	_{ef} ≤ 1,3	·	10	1,0	h _{et} 2.26-h	C _{LT} , s.p.			
コンクリートコーン破壊に		[mm]						2 c _{cr,N}							
よる基準アンカーピッチ	Scr,N	[mm]						∠ ∪cr,N							
コンクリートコーン破壊に		[mm]			•		•	15h.		•					
よる基準へりあき寸法。	C _{cr,N}	[mm]	1,5 h _{ef}												


HIS-N スリーブ 施工条件詳細

アンカーサイズ			M8	M10	M12	M16	M20			
穿孔径(ビット呼び径)	d_0	[mm]	14	18	22	28	32			
アンカー直径	d	[mm]	12,5	16,5	20,5	25,4	27,6			
有効埋め込み長	h _{ef}	[mm]	90	110	125	170	205			
最小母材厚	h _{min}	[mm]	120	150	170	230	270			
取付物の下穴径	df	[mm]	9	12	14	18	22			
ねじの嵌合長さ:	L	ſ1	0.00	40.05	40.00	40.40	00.50			
最小-最大	hs	[mm]	8-20	10-25	12-30	16-40	20-50			
最小アンカーピッチ	Smin	[mm]	60	70	90	115	130			
最小へりあき	C _{min}	[mm]	40	45	55	65	90			
割裂破壊による基準アン				1	•	•				
カーピッチ	Scr,sp	[mm]			2 C _{cr,sp}					
			1,0 · h _{ef}	for h / h _{ef} ≥	2,0	n/h _{ef}				
割裂破壊による基準へり	_	[mama]	4,6 h _{ef} – 1,8 h	4,6 h _{ef} - 1,8 h for 2,0 > h / h _{ef} > 1,3						
あき ^{b)}	C _{cr,sp}	[mm]				1,3				
			2,26 h _{ef}	for h / h _{ef} s	≦ 1,3	1,0 h _{ef} 2	,26 h _{ef}			
コンクリートコーン状破壊										
による基準アンカーピッチ	Scr,N	[mm]			2 c _{cr,N}					
コンクリートコーン状破場		[1			4.5.6					
による基準へりあきり	C _{cr} ,N	[mm]	1,5 h _{ef}							
最大締付トルク a)	T _{max}	[Nm]	10	20	40	80	150			
						•				

基準アンカーピッチ(基準へりあき)より狭いアンカーピッチ(へりあき)の場合、設計荷重は低減して下さい。

- a) h_{ef,min} ≤ h_{ef} ≤ h_{ef,max} (h_{ef}: 有効埋込み長)
- b) h: 母材厚 (h ≥ h_{min})
- c) コンクリートコーン状破壊による基準へりあきは、有効埋込み長 hef と設計付着強度による影響を受けます。 上表の簡易式は安全側にて検討されています。

標準施工工具

アンカーサイズ		M8	M10	M12	M16	M20	M24	M27	M30	M36	M39
ロータリー ハンマードリル	HIT-V		TE 2 – TE 16				TE 40 -		ヒルティ製品無し		
	HIS-N	TE 2 – TE 16					-				
他の工具		I	, ディス	(ペンサ-							
		目荒らし(ラフニング)ツール TE-YRT							-		
その他ヒルティ推	奨工具		•	DD EC	-1, DD 1	100 DD 160 ^{a)}				-	

a) ダイアモンドコアドリルの目荒らしなしの穿孔の場合、HIS-N スリーブのデータなし

最小目荒らし(ラフニング)時間 t_{roughen} (t_{roughen} [sec] = h_{ef} [mm] /10)

有効埋込み長 h _{ef} [mm]	時間 t _{roughen} [sec]
0 ~ 100	10
101 ~ 200	20
201 ~ 300	30
301 ~ 400	40
401 ~ 500	50
501 ~ 600	60

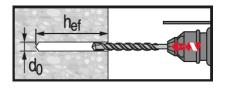
清掃ツールおよび打設ツールのサイズ組み合わせ

		穿	孔径(ビット	乎び径) d₀ [m	ım]	清掃。	・定着
HIT-V ボルト	HIS-N スリーブ	ハンマー ドリル (HD)	ホロー ビット (HDB)	ダイアモ コアビット (DD)	ンドコア 目荒らし (ラフニング) ツール (RT)	清掃ブラシ HIT-RB	ピストン プラグ HIT-SZ
numumi 🗐 n				\$ ⊕ >			
M8	-	10	-	10	-	10	=
M10	-	12	-	12	-	12	12
M12	M8	14	14	14	-	14	14
M16	M10	18	18	18	18	18	18
M20	M12	22	22	22	22	22	22
M24	M16	28	28	28	28	28	28
M27	-	30	-	30	30	30	30
-	M20	32	32	32	32	32	32
M30	-	35	35	35	35	35	35
M33	-	37	-	-	-	37	37
M36	-	40			-	40	40
M39	-	42	-	-	-	42	42

ヒルティ目荒らし(ラフニング)ツール TE-YRT の適合サイズと付属部品

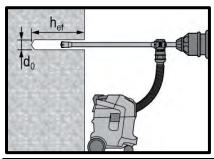
ダイヤー	Eンドコア	目荒らし(ラフニング)ツール TE-YRT	チェックゲージ RTG
\$	()		0
穿孔径	d ₀ [mm]	穿孔径 d₀ [mm]	サイズ
基準	実寸	好记主 do [min]	9-1
18	17,9 ~ 18,2	18	18
20	19,9 ~ 20,2	20	20
22	21,9 ~ 22,2	22	22
25	24,9 ~ 25,2	25	25
28	27,9 ~ 28,2	28	28
30	29,9 ~ 30,2	30	30
32	31,9 ~ 32,2	32	32
35	34,9 ~ 35,2	35	35

施工手順

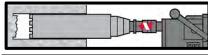

*施工工具の詳細は製品パッケージの使用説明書を参照。

安全規制.

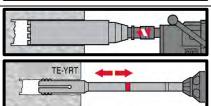
適切で安全な取り扱いのために、事前に材料安全データシート (MSDS)をご確認ください。 HIT-RE500 V3 を取り扱う際には適した保護ゴーグルと保護手袋を着用してください。


穿孔

ハンマードリル穿孔 (HD)


・乾燥および湿潤コンクリート、浸水が ある穴への施工

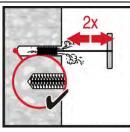
※海水の場合ヒルティ技術担当者へ相談


ヒルティホロービット穿孔 (HDB)

- •清掃不要
- ・乾燥/湿潤コンクリートのみ

ダイヤモンドコア穿孔

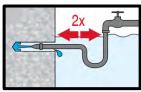
・乾燥/湿潤コンクリートのみ

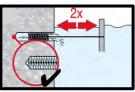


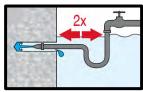
ダイヤモンドコア穿孔+目荒らし(57こ) が)**ツール**使用

- ・乾燥/湿潤コンクリートのみ
- ・目荒らし前に孔内を乾燥させる必要

孔内清掃 (不適切な清掃=耐力低下)

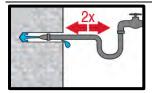


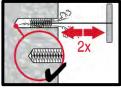


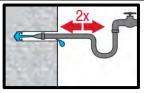

ハンマードリル穿孔 (HD) の場合:

エアコンプレッサーによる清掃 (CAC)

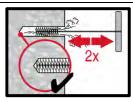
・全ての穿孔径および穿孔深さで行う



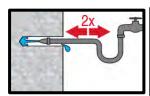

ハンマードリル穿孔 (HD) の場合:

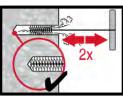

※水中施工の清掃:

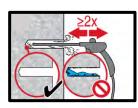
・全ての穿孔径および穿孔深さで行う



ハンマードリル穿孔(浸水がある穴への 施工)とダイヤモンドコア穿孔の場合:

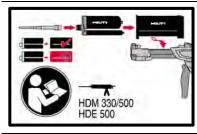


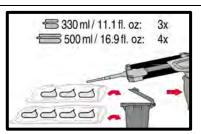




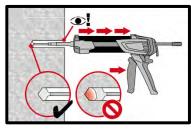
エアコンプレッサーによる清掃 (CAC)

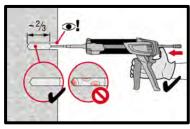
・全ての穿孔径および穿孔深さで行う

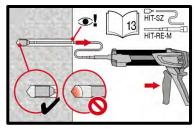


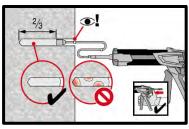

ダイヤモンドコア穿孔+目荒らし(ラフニン が)ツール使用の場合:

エアコンプレッサーによる清掃 (CAC)

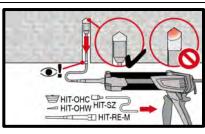

・全ての穿孔径および穿孔深さで行う

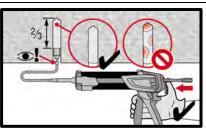

樹脂注入


注入システム準備



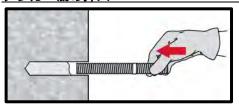
樹脂注入


有効埋込み長 hef が 250 mm 以下の場合



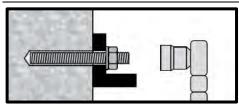
プロフィシステムによる樹脂注入

有効埋込み長 hef が 250 mm 以上の場合

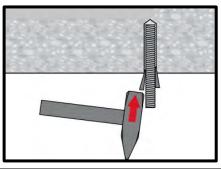


プロフィシステムによる樹脂注入

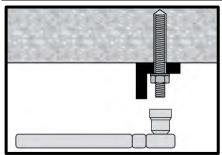
上向きの場合の注入方法



アンカー筋の挿入


ゲル状時間(twork)が経過する前に

アンカー筋を挿入



硬化時間(tcure)経過後にアンカー筋に荷重を掛ける

※締付トルク値はTmax.を越えてはならない

上向き施工も同様にゲル状時間(twork)が経過する前にアンカー筋を挿入

硬化時間(tcure)経過後にアンカー筋に荷重を掛ける

※締付トルク値はTmax.を越えてはならない

HIT-RE 500 V3 接着系注入方式アンカー

接着系注入方式アンカーシステム

特徴

Hilti HIT-RE500 V3

フォイルパック 330ml (500ml,1400 ml あり) -SAFESet (セーフセット工法) ヒルティのホロードリルビット穿 孔と同時に吸塵する工法とダイヤモ ンドコア用目荒らしツールの使用 により施工安定性と高耐力を可能

- -ひび割れを想定しない又はひび割 れを想定するコンクリート C20/25 - C50/60 に適用
- ETA 耐震性能 C1, C2^{a)}認証
- 高耐力
- 乾燥、湿潤、冠水コンクリートに 適用
- 水中施工可能(標準外施工)
- 高い耐腐食性能
- 高温時でも長い可使時間
- 母材温度 -5°C で使用可能
- 無臭エポキシ樹脂

CONTRACTOR OF THE STATE OF THE

鉄筋 B500 B (\$8 - \$40)

母材

荷重条件

F

ひび割れを想定したコンクリート

ひび割れを想定するコンクリート

乾式 コンクリート

湿式 コンクリート

静的/ 準静的

耐震性能 ETA-C1 ヒルティ社内データ-C2

施工条件

その他の情報

ハンマード リル穿孔

ダイヤモン ドコア穿孔

ヒルティ **セーフセット** 工法

狭いへりあきと アンカーピッチ

ETA

CE 適合

PROFIS アンカー設計 ソフト対応

承認/証明

種類	機関 / 研究所	No. / 発行年月日
ETA 欧州技術認証 ^{a)}	CSTB, Marne la Vallée	ETA-16/0143 / 2017-07-12

a) 本章における全てのデータは 2016 年 11 月 30 日発行の ETA-16/0143 に基づいています。

静的または準静的負荷 (単体留付けアンカー)

本項の全ての数値は下記条件の場合に適用されます。

- -設計法は TR029 に準拠
- -正しく施工されていること (施工手順参照) -へりあき、アンカーピッチの影響なし -下表斜字数値は鋼材破壊値

- -基準母材厚は表による
- -有効埋め込み長は表による
- -鉄筋 B500B
- -コンクリート圧縮強度(C 20/25): fck,cube = 25 N/mm²(JIS 規格のコンクリート圧縮強度 Fc≒21N/mm²相当)
- -使用温度範囲Ⅰ (最小:母材温度 -40°C、最大:(長期) +24°C、(短期) +40°C)

静的または準静的荷重における 有効埋め込み長と母材厚

				ETA	-16/01	43, (2	017-07	-12 発行	굿)			ヒル 社内5	-
アンカーサイズ	ф8	φ10	φ12	φ14	φ16	φ20	φ25	φ28	ф30	ф32	ф36	φ40	
有効埋込み長	[mm]	80	90	110	125	125	170	210	270	285	300	330	360
母材厚	[mm]	110	120	140	161	165	220	274	340	359	380	420	470

ハンマードリル穿孔、ホロービット¹⁾ 穿孔、ダイヤモンドコア+目荒らし(ラフニング) ツール²⁾穿孔:

- 1) ヒルティホロービット: M12~M28.
- 2) 目荒らし (ラフニング) ツール: φ14~φ28.

基準耐力

						ET/	A-16/0 1	142 (2017.0	17.12 8	*⁄二)			ヒル	ティ
							4-10/0	143, (2017-0)/-123	61 J/			社内ラ	データ
アンカー	-サイス	ζ		ф8	φ10	φ12	φ14	φ16	φ20	φ25	ф28	ф30	ф32	ф36	φ40
ひび割れを想定しないコンクリート															
引張	N _{Rk}	B500B	[kN]	ı	39,6	58,1	70,6	70,6	111,9	153,7	224,0	249,4	262,4	302,7	344,9
せん断	V_{Rk}	B500B	[KIA]	ı	22,0	31,0	42,0	55,0	86,0	135,0	169,0	194,0	221,0	280,0	346,0
					ひび	割れを	想定す	るコン	クリー	٠٢					
引張	N _{Rk}	B500B	[kN]	-	24,0	39,4	50,3	50,3	79,8	109,6	159,7	177,8	187,1	-	-
せん断	V_{Rk}	B500B		-	22,0	31,0	42,0	55,0	86,0	135,0	169,0	194,0	221,0	-	-

- 1) ヒルティホロービット: M12~M28.
- 2) 目荒らし(ラフニング)ツール: φ14~φ28.

設計耐力

		_,,				ETA	A-16/0′	143, (2017-0	07-12	発行)			ヒル・社内テ	-
アンカー	-サイス	ζ		ф8	φ10	φ12	φ14	φ16	φ20	φ25	φ28	ф30	ф32	φ36	φ40
ひび割れを想定しないコンクリート															
引張	N _{Rk}	B500B	- [kN]	-	26,4	38,7	47,1	47,1	74,6	102,5	149,4	166,3	174,9	168,2	191,6
せん断	V_{Rk}	B500B	נאואן	-	14,7	20,7	28,0	36,7	57,3	90,0	112,7	129,3	147,3	186,7	230,7
					ひび	割れを	想定す	るコン	クリー	-ト					
引張	N_{Rk}	B500B	[LVI]	-	16,0	26,3	33,5	33,5	53,2	73,0	106,5	118,5	124,7	-	-
せん断	V_{Rk}	B500B	[kN]	-	14,7	20,7	28,0	36,7	57,3	90,0	112,7	129,3	147,3	-	-

- 1) ヒルティホロービット: M12~M28.
- 2) 目荒らし (ラフニング) ツール: φ14~φ28.

許容安全荷重 3)

						ETA	4-16/0 ′	143, (2017-	07-12	発行)			ヒル社内テ	
アンカー	サイノ	ζ		ф8	φ10	φ12	φ14	φ16	φ20	φ25	φ28	ф30	ф32	φ36	φ40
ひび割れを想定しないコンクリート															
引張	N _{Rk}	B500B	- [kN]	-	18,8	27,6	33,6	33,6	53,3	73,2	106,7	115,7	125,0	120,1	136,9
せん断	V_{Rk}	B500B	- [KIN]	-	10,5	14,8	20,0	26,2	41,0	64,3	80,5	92,4	105,2	133,3	164,6
ひび割れ	を想定	まするコン	クリー	٢											
引張	N_{Rk}	B500B	- [kN]	-	11,4	18,8	24,0	24,0	38,0	52,2	76,1	84,7	89,1	-	-
せん断	V_{Rk}	B500B	[KIN]	•	10,5	14,8	20,0	26,2	41,0	64,3	80,5	92,4	105,2	-	-

- 1) ヒルティホロービット: M12~M28.
- 2) 目荒らし(ラフニング)ツール: ϕ 14 \sim ϕ 28.
- 3) 部分安全係数は $\gamma=1,4$ です。この部分安全係数は荷重の種類によって異なるため、各国の基準を採用してください.

ダイアモンドコア穿孔:

基準耐力

		_,,				E	TA-16/0	143, (2	017-07-	12 発行)			
アンカー	ーサイン	ζ		ф8	φ10	φ12	φ14	φ16	φ20	φ25	φ28	φ30	ф32
引張	N_{Rk}	B500B	[kN]	-	25,4	37,3	49,5	56,5	96,1	148,4	224,0	249,4	262,4
せん断	V_{Rk}	B500B	[KIN]	-	22,0	31,0	<i>4</i> 2,0	<i>55,0</i>	86,0	135,0	169,0	194,0	221,0

設計耐力

-> +	11. 4-	-				Е	TA-16/0	143, (2	2017-07-	12 発行)			
アンカー	アンカーサイズ				φ10	φ12	φ14	φ16	φ20	φ25	φ28	φ30	φ32
引張	N_{Rk}	B500B	[LVI]	-	14,1	20,7	27,5	26,9	45,8	70,7	106,7	115,7	125,0
せん断	V_{Rk}	B500B	[kN]	-	14,7	20,7	28,0	36,7	57,3	90,0	112,7	129,3	147,3

許容安全荷重 a)

						E	TA-16/0	143, (2	2017-07-	12 発行)			
アンカー	ーサイン	ζ		ф8	φ10	φ12	φ14	φ16	φ20	φ25	φ28	φ30	φ32
引張	N_{Rk}	B500B	[kN]	-	10,1	14,8	19,6	19,2	32,7	50,5	76,2	82,6	89,3
せん断	V_{Rk}	B500B	[KIN]	-	10,5	14,8	20,0	26,2	41,0	64,3	80,5	92,4	105,2

a)部分安全係数は $\gamma=1,4$ です。この部分安全係数は荷重の種類によって異なるため、各国の基準を採用してください。

耐震荷重 (単体留付けアンカー)

本項の全ての数値は下記条件の場合に適用されます。

- 設計法は TR029 に準拠
- -正しく施工されていること (施工手順参照)
- -へりあき、アンカーピッチの影響なし
- 下表斜字数値は鋼材破壊値
- -有効埋込み長、母材厚は表による
- -鉄筋<u>B500B</u>
- -コンクリート圧縮強度(C 20/25): fck,cube = 25 N/mm²(JIS 規格のコンクリート圧縮強度 Fc≒21N/mm²相当)

Seismic

- -使用温度範囲 Ⅰ (最小:母材温度 -40°C、最大:(長期) +24°C、(短期) +40°C)
- 鉄筋 B450C
- $\alpha_{gap} = 1.0$

ハンマードリル穿孔:

耐震 C2 認証における 有効埋込み長と母材厚

アンカーサイズ	φ8	φ10	φ12	φ14	φ16	ф20	ф25	ф28	ф30	ф32	ф36	φ40
有効埋込み長 [mr	ո] -	-	-	-	125	170	210	-	-	-	-	-
母材厚 [mr	າ] -	-	-	-	165	220	274	-	-	-	-	-

耐震 C2 認証 1)における 基準耐力

アンカ-	アンカーサイズ				φ10	φ12	φ14	φ16	ф20	ф25	ф28	ф30	ф32	ф36	φ40
引張	N _{Rk} , seis	B450C	[kN]	-	-	-	-	24,5	45,9	57,7	-	-	-	-	-
せん断	V _{Rk} , seis	B450C	[kN]	-	-	-	-	16,7	29,7	40,7	-	-	-	-	-

¹⁾ ヒルティ社内データ.

耐震 C2 認証 1)における 設計耐力

アンカ-	ーサイズ			ф8	φ10	φ12	φ14	φ16	ф20	ф25	ф28	ф30	ф32	ф36	φ40
引張	N _{Rk} , seis	B450C	[kN]	-	-	-	-	16,3	30,6	38,5	-	-	-	-	-
せん断	V _{Rk} , seis	B450C	[kN]	-	-	-	-	13,3	23,7	32,5	-	-	-	-	-

¹⁾ ヒルティ社内データ.

ハンマードリル穿孔、ホロービット¹⁾ 穿孔、ダイヤモンドコア+目荒らし(ラフニング) ツール²⁾穿孔:

耐震 C1 認証における 有効埋込み長と母材厚

アンカーサイズ		ф8	φ10	φ12	φ14	φ16	ф20	ф25	ф28	ф30	ф32	ф36	φ40
有効埋込み長	[mm]	-	90	110	125	125	170	210	270	285	300	1	-
母材厚	[mm]	-	120	140	161	165	220	274	340	359	380		-

耐震 C1 認証における 基準耐力

アンカ-	-サイズ			ф8	φ10	φ12	φ14	φ16	ф20	ф25	ф28	ф30	ф32	ф36	φ40
引張	N _{Rk} , seis	B500B	- [kN]	-	22,6	35,3	42,8	42,8	67,8	93,1	135,8	151,1	159,0	-	-
せん断	V _{Rk} , seis	B500B	- [ווא]	-	22,0	31,0	42,0	55,0	86,0	135,0	169,0	194,0	221,0	-	-

¹⁾ ヒルティホロービット: M12~M28.

耐震 C1 認証における 設計耐力

アンカーサイズ	ф8	φ10	φ12	φ14	φ16	ф20	ф25	ф28	φ30	ф32	ф36	φ40
引張 N _{Rk, seis} B500B [kN]		15,1	23,5	28,5	28,5	45,2	62,1	90,5	100,7	106,0	-	-
せん断 V _{Rk, seis} B500B [KIN]	-	14,7	20,7	28,0	36,7	57,3	90,0	112,7	129,3	147,3	-	-

²⁾ ヒルティホロービット: M12~M28.

²⁾ 目荒らし (ラフニング) ツール: φ14~φ28.

³⁾ 目荒らし(ラフニング)ツール: φ14~φ28.

材料

機械的特性

アンカーサイズ	アンカーサイズ			φ10	φ12	φ14	φ16	φ20	ф25	ф28	ф30	ф32	ф36	ф40
引張強度 fuk	B500B	-[N/mm²]	550	550	550	550	550	550	550	550	550	550	550	550
TINCHE TUK	B450C	-[IN/IIIII1-]	ı	-	-	-	518	518	518	-	ı	-	ı	-
降伏点強度 fyk	B500B	[N/mm²]	500	500	500	500	500	500	500	500	500	500	500	500
阵闪黑强反 Tyk	B450C	50C		-	-	-	450	450	450	-	-	-	-	-
応力断面積 A。	B500B	[mayaa 2]	50,3	78,5	113,1	153,9	201,1	314,2	490,9	615,8	706,9	804,2	1018	1257
ルンノの田代 As	B450C	- [mm²]		-	-	-	201,1	314,2	490,9	-	-	-	-	-
断面係数 W	B500B	r 31	50,3	98,2	169,6	269,4	402,1	785,4	1534	2155	2650	3217	4580	6283
四川山市女X VV	B450C	- [mm³]	-	-	-	-	402,1	785,4	1534	-	-	-	-	-

材料品質

部材	材質
鉄筋 EN 1992-1-1:2004 and AC:2010	Bars and de-coiled rods class B or C with f_{yk} and k according to NDP or NCL of EN 1992-1-1/ NA:2013 $f_{uk} = f_{tk} = k \cdot f_{yk}$

施工条件

施工温度範囲 -5°C∼+40°C

使用温度範囲

HIT-RE500 V3 注入方式アンカーは以下の 温度範囲にて適用されます。 母材温度の上昇により、設計付着強度が低下する場合があります。

温度範囲	母材温度	長期最大母材温度	短期最大母材温度
温度範囲 I	-40 °C ∼+40 °C	+24 °C	+40 °C
温度範囲 II	-40 °C ∼+70 °C	+43 °C	+70 °C

短期最大母材温度

一日程度の短いサイクルの気温の変化に伴って、母材温度が変化するときの最大母材温度を指します。

長期最大母材温度

長期間(二週間以上)にわたる継続的な気温変化に伴って、母材温度が変化するときの最大母材温度を指します。

ゲル状時間、硬化時間

母材温度	最大ゲル状時間 t _{work}	最小硬化時間 t _{cure} 1)
-5 °C ≤ T _{BM} < -1 °C	2 h	168 h
$0~^{\circ}C \leq T_{BM} < 4~^{\circ}C$	2 h	48 h
$5~^{\circ}C \leq T_{BM} < 9~^{\circ}C$	2 h	24 h
10 °C ≤ T _{BM} < 14 °C	1,5 h	16 h
15 °C ≤ T _{BM} < 19 °C	1 h	12 h
$20~^{\circ}C \leq T_{BM}~< 24~^{\circ}C$	30 min	7 h
$25~^{\circ}C \leq T_{BM} < 29~^{\circ}C$	20 min	6 h
$30~^{\circ}C \leq T_{BM}~< 34~^{\circ}C$	15 min	5 h
$35~^{\circ}C \leq T_{BM} < 39~^{\circ}C$	12 min	4,5 h
T _{BM} = 40 °C	10 min	4 h

¹⁾ 硬化時間は乾燥コンクリートに適用します。湿潤コンクリートの場合には2倍の硬化時間が必要です。

標準施工工具

鉄筋サイズ	ф8	φ10	φ12	φ14	φ16	φ20	φ25	φ28	φ30	ф32	ф36	φ40
ロータリーハンマードリル		TE 2 (-A) – TE 40(-A) TE40 – TE80)	
ダイアモンドコアツール		DD EC-1, DD 100 DD 160 a)									-	-
他の丁具	エアーコンプレッサー, ブラシ, ホロービット、ラフニングツール									ール、	ディ	
	スペンサー、ピストンプラグ											

a) ダイアモンドコアドリル穿孔野場合、抜け破壊とコンクリートコーン状破壊の複合破壊の耐力は低減して下さい。

ダイヤモンドコア穿孔径とヒルティ目荒らし(ラフニング)ツール TE-YRT の適合サイズと付属部品

ダイヤモ	ンドコア	目荒らし(ラフニング)ツール TE-YRT	チェックゲージ RTG
€ (•		
穿孔径	d₀ [mm]	穿孔径 d₀[mm]	サイズ
基準	実寸	分が主 do[mm]	947
18	17,9 ~ 18,2	18	18
20	19,9 ~ 20,2	20	20
22	21,9 ~ 22,2	22	22
25	24,9 ~ 25,2	25	25
28	27,9 ~ 28,2	28	28
30	29,9 ~ 30,2	30	30
32	31,9 ~ 32,2	32	32
35	34,9 ~ 35,2	35	35

最小目荒らし(ラフニング)時間 t_{roughen} (t_{roughen} [sec] = h_{ef} [mm] /10)

有効埋込み長 hef [mm]	t _{roughen} [sec]
0 ~ 100	10
101 ~ 200	20
201 ~ 300	30
301 ~ 400	40
401 ~ 500	50
501 ~ 600	60

施工条件詳細

アンカーサイズ			Ø8	Ø10	Ø.	12	Ø14	Ø16	Ø20	Ø25	Ø28	Ø30	Ø32	Ø36	Ø40
穿孔径 (ビット呼び径)	d ₀	[mm]	10 12 ^{a)}	12 14 ^{a)}	14 ^{a)}	16 ^{a)}	18	20	25	30 32 ^{a)}	35	37	40	45 ¹⁾	55 ¹⁾
有効埋込み長	h _{ef,mi}	[mm]	60	60	70	70	75	80	90	100	112	120	128	144 ¹⁾	160 ¹⁾
範囲 ^{b)}	h _{ef,ma}	[mm]	160	200	240	240	280	320	400	500	560	600	640	720 ¹⁾	8001)
最小母材厚	h _{min}	[mm]		f +30n 100 m						h _{ef} +	2 d ₀		•		•
最小アンカーピッ	S _{min}	[mm]	40	50	60	60	70	80	100	125	140	150	160	180 ¹⁾	2001)
最小へりあき	Cmin	[mm]	40	45	45	45	50	50	65	70	75	80	80	180 ¹⁾	2001)
割裂破壊による基準アンカーピッチ	S _{cr,sp}	[mm]							2 C _{cr,sp}						
				1,0 · h	ef	fo	or h / h	_{ef} ≥ 2,0)	h/h _{ef} -				,,	
割裂破壊による基準へりあき 😗	C _{cr,sp}	[mm]	4,6	h _{ef} - 1	,8 h	for 2	2,0 > h	/ h _{ef} >	1,3	1,3 -	inamphilamin			21111112	
				2,26 h	ef	fo	or h / h	_{ef} ≤ 1,3	3	4		1,0 h _{ef}	2,26	·h _{ef}	Ccr,sp
コンクリートコー ン状破壊による基 準アンカーピッチ	S _{cr,N}	[mm]							2 Ccr,N						
コンクリートコー ン状破壊による基 準へりあき ^の	Ccr,N	[mm]							1,5 h _{ef}						

1) その他のヒルティ社内データ

基準アンカーピッチ(基準へりあき寸法)より狭いアンカーピッチ(へりあき寸法)の場合、設計荷重は低減して下さい。

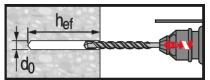
- a) 表記の両方の穿孔径が使用可能
- b) h_{ef,min} ≤ h_{ef} ≤ h_{ef,max} (h_{ef}: 有効埋込み長)
- c) h: 母材厚 (h ≥ h_{min})
- d) コンクリートコーン状破壊による基準へりあき寸法は、有効埋込み長 hef と設計付着強度による影響を受けます。上表の簡易式は安全側にて検討されています。

穿孔径、清掃ツールおよび打設ツールのサイズ組み合わせ

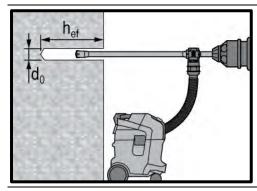
			ダイアモ	ンドコア		
鉄筋サイズ	ハンマードリル (HD)	ホロー ビット (HDB)	コアビット (DD)	目荒らし (ラフニング) ツール (RT)	清掃ブラシ HIT-RB	ピストン プラグ HIT-SZ
	穿孔	1径(ビット呼び	圣) d ₀ [mm]		サイズ	[mm]
VIZIZIZIZIZIZ			₹ © >			
ф8	12 (10 a))	-	12 (10 a))	-	12 (10 a))	12
φ10	14 (12 a))	14	14 (12 a))	-	14 (12 a))	14 (12 a))
φ12	16 (14 ^{a)})	16 (14 a))	16 (14 ^{a)})	-	16 (14 ^{a)})	16 (14 a))
φ14	18	18	18	18	18	18
φ16	20	20	20	20	20	20
φ20	25	25	25	25	25	25
φ25	32	32	32	32	32	32
ф28	35	35	35	35	35	35
ф30	37	-	37	-	37	37
ф32	40	-	-	-	40	40
ψ32	-	-	42	-	42	42
ф36	45 ^{b)}	-	-	-	45 ^{b)}	45 ^{b)}
φ40	55 ^{b)}	-	-	-	55 ^{b)}	55 ^{b)}

a) 表記の両方の穿孔径が使用可能

b) その他のヒルティ社内データ

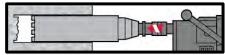

施工手順

*施工工具の詳細は製品パッケージの使用説明書を参照。

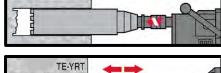


安全規制.

適切で安全な取り扱いのために、事前に材料安全データシート (MSDS)をご確認ください。 HIT-RE500 V3 を取り扱う際には適した保護ゴーグルと保護手袋を着用してください。



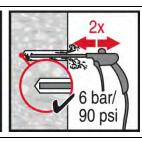
ハンマードリル穿孔 (HD)



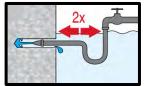
ヒルティホロービット穿孔 (HDB)

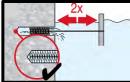
・清掃不要

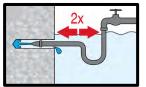
ダイヤモンドコア穿孔



ダイヤモンドコア穿孔+目荒らし(ラフニン が)**ツール使用**

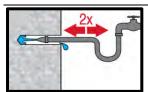


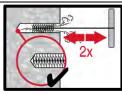


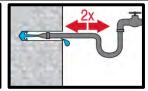

ハンマードリル穿孔 (HD) の場合:

エアコンプレッサーによる清掃 (CAC)

・全ての穿孔径および穿孔深さが h₀ ≤ 20·d の場合に行う

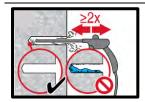


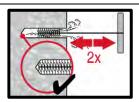



ハンマードリル穿孔 (HD)の場合:

※水中施工の清掃:

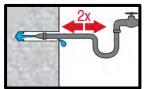
・全ての穿孔径および穿孔深さで行う

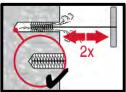


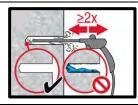


ハンマードリル穿孔(浸水がある穴への 施工)とダイヤモンドコア穿孔の場合:

35

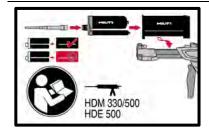


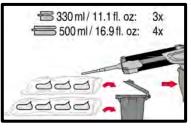




エアコンプレッサーによる清掃 (CAC)

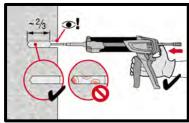
・全ての穿孔径および穿孔深さで行う

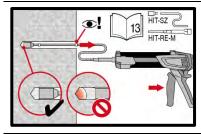


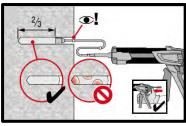


ダイヤモンドコア穿孔+目荒らし (ラフニン が) ツール使用の場合:

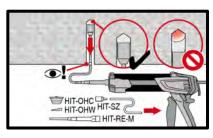
エアコンプレッサーによる清掃 (CAC)

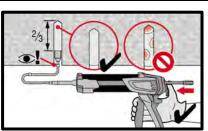

・全ての穿孔径および穿孔深さで行う


注入システム準備

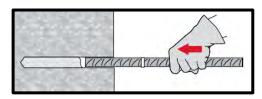


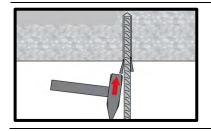
樹脂注入


有効埋込み長 hef が 250 mm 以下の場合



プロフィシステムによる樹脂注入


有効埋込み長 hef が 250 mm 以上の場合



プロフィシステムによる樹脂注入

上向きの場合の注入方法

ゲル状時間(twork)が経過する前に アンカー筋を挿入する

上向き施工も同様にゲル状時間(twork)が経過する前にアンカー筋を挿入する、

使用範囲 (長期特性)

ETAG ガイドライン 001 パート 5 および TR 023 に従って、次の条件でいくつかのクリープ試験が行われています:50℃の乾燥環境で90 日間。

これらの試験結果(長期安定性を備えた低変位、基準荷重を超える暴露後の破壊荷重)により、HIT-RE 500 V3 で施工されたあと施工アンカーの優れた長期特性を示しています。

化学物質に対する耐性

化学物質	含有量 (%)	耐性
トルエン	47,5	+
イソオクタン	30,4	+
ヘプタン	17,1	+
メタノール	3	+
ブタノール	2	+
トルエン	60	+
キシレン	30	+
メチルナフタレン	10	+
ディーゼル(軽油)	100	+
ガソリン	100	+
メタノール	100	-
ジクロロメタン	100	-
モノクロロベンゼン	100	0
エチルアセタート	50	-
メチルイソブチルケト	50	-
サリチル酸 – メチルエステル	50	+
アセトフェノン	50	+
酢酸	50	-
プロピオン酸	50	-
硫酸	100	-
硝酸	100	-
塩酸	36	-
水酸化カリウム	100	-

化学物質	含有量 (%)	耐性
水酸化ナトリウム 20%	100	-
トリエタノールアミン	50	-
ブチルアミン	50	-
ベンジルアルコール	100	-
エタノール	100	-
酢酸エチル	100	-
メチルエチルケトン(MEK)	100	-
トリクロロエチレン	100	-
ルテンシット TC KLC 50	3	+
マロフェン NP 9,5	2	+
水	95	+
テトラヒドロフラン	100	-
脱塩水	100	+
海水	saturated	+
塩水噴霧試験	-	+
SO ₂	-	+
気象環境	-	+
コンクリート剥離剤(型枠用)	100	+
コンクリート流動化剤	-	+
コンクリート苛性カリ	-	+

- + 耐性あり
- ー 耐性なし
- o 最大 48 時間以内で耐性あり

電気伝導性

- ・硬化状態の HIT-RE 500 V3 は導電性ではなく、電気抵抗率は $66 \times 10^{12} \Omega cm$ です(DIN IEC 93-12.93)。
- ・電気絶縁固定に適応しております(例:鉄道用途、地下鉄)。

HIT-HY 200 接着系注入方式アンカー

接着系注入方式アンカーシステム

Hilti HIT-HY200-A 500ml フォイルパ ック (330ml あり)

Hilti HIT-HY200-R 500ml フォイルパ ック (330ml あり)

アンカーボルト: HIT-V HIT-V-F HIT-V-R HIT-V-HCR (M8-M30)

内ねじアンカース リーブ: HIS-N HIS-RN (M8-M20)アンカーボルト: HIT-Z HIT-Z-F HIT-Z-R

特徴

- SAFESet(セーフセット工法): ヒルティのホロードリルビットによ る穿孔と同時に吸塵する工法
- ひび割れを想定しない又はひび割 れを想定するコンクリート C20/25 - C50/60 に適用
- ETA 耐震性能カテゴリ C1, C2^{a)} について承認済み
- 高い耐腐食性 ^{b)}
- 狭いへりあきとアンカーピッチも 対応可能
- 亀裂のないコンクリートに対して のみ手動による清掃のアンカーサ イズが最大 20mm、基準有効埋 め込み長は $h_{ef} \le 10d$ まで
- ひび割れを想定しないコンクリー トのみ手動清掃のアンカーサイズ M20、基準有効埋め込み長は h_{ef}≤10d まで
- 硬化時間 2 種類の樹脂: HY 200-R は低速硬化 HY 200-A は高速硬化

- 内ねじアンカースリーブ HIS-N は耐震性能には承認されていません。
- 高耐腐食性は HIT-V のみに対応しています。HIT-V と HIS-N は耐腐食性が対応しています。

母材

ひび割れを想定しない コンクリート

ひび割れを想定する コンクリート

施工条件

0

(M8-M20)

SAFESET

ハンマー ドリル穿孔

その他の情報

ダイヤモンド コア穿孔 ^{c)}

ヒルティ セーフセット 工法

埋め込み長さ の変化に対応

狭いへりあきと アンカーピッチ

負荷条件

静的/準静的 荷重

耐震性能 ETA-C1, C2^{a)}

耐火性

ETA

CE 適合

耐腐食 b)

HCR 高耐腐食 b)

PROFIS アンカー設計 ソフト対応

- 内ねじアンカースリーブ HIS-N は耐震性能には承認されていません。.
- HIT-V 専用の高耐腐食性 HIT-V および HIS-N に対応しています。
- ダイヤモンドコア穿孔は HIT-Z ボルトのみカバーしています。

認証 / 証明

種類	機関 / 研究所	No. / 発行年月日
ETA 欧州技術認証 ^{a)}	DIBt, Berlin	ETA-11/0493/ 2017-07-28 (HY200 A)
ETA 欧州技術認証	DIBt, Berlin	ETA-12/0006/ 2017-05-30 (HY200 A)
ETA 欧州技術認証	DIBt, Berlin	ETA-11/0492/ 2014-06-26 (HY200 A)
ETA 欧州技術認証	DIBt, Berlin	ETA-12/0084/ 2017-07-28 (HY200 R)
ETA 欧州技術認証	DIBt, Berlin	ETA-12/0028/ 2017-05-30 (HY200 R)
ETA 欧州技術認証	DIBt, Berlin	ETA-12/0083/ 2018-06-26 (HY200 R)
民間防衛施設における耐衝撃性	Federal Office for Civil Protection, Bern	BZS D 13-604 / 2013-12-31 BZS D 13-603 / 2013-12-31
耐火試験報告書	IBMB, Brunswick	3502/676/12 / 2017-09-15

a) 本章における全てのデータは ETA 欧州技術認証に基づいています。

静的または準静的耐力(単体アンカーでの留付け)

本項の全ての数値は下記条件の場合に適合されます。:

- 正しく施工されていること (施工手順参照)
- へりあき、アンカーピッチの影響なし
- 下表斜字数値は鋼材破壊値
- 最小母材厚
- 標準有効埋め込み長は表による
- アンカー材質は表による
- コンクリート圧縮強度 C 20/25, f_{ck,cube} = 25 N/mm² (JIS 規格 Fc≒21N/mm²相当)
 温度範囲 I (最小. 母材温度. -40°C, 最大. 長期/短期 母材温度.: +24°C/40°C)

ハンマードリル穿孔、HILTI ホロードリルビットを用いたハンマードリル穿孔の場合:

アンカー埋込み長 1)

/ / / L EV/L										
アンカーサイズ			M8	M10	M12	M16	M20	M24	M27	M30
HIT-V										
埋込み長		[mm]	80	90	110	125	170	210	240	270
母材厚		[mm]	110	120	140	161	234	266	300	340
HIS-N										
埋め込み長		[mm]	90	110	125	170	205	-	-	-
母材厚		[mm]	120	150	170	230	270	-	-	-
HIT-Z										
有効アンカー埋込み長 ²⁾	$h_{ef} = I_{Helix}$	[mm]	50	60	60	96	100	-	-	-
有効埋込み長 ³⁾	h _{ef} =h _{nom,min}	[mm]	70	90	110	145	180	-	-	-
母材厚		[mm]	130	150	170	245	280	-	-	-

- 1) 埋め込み長の許容範囲は詳細設定に記載されています。
- 2) 引き抜きとコンクリートコーンによる複合破壊
- 3) コンクリートコーン破壊
- a) ヒルティアンカーボルト HIT-Z-F: M16 および M20

基準耐力

アンカーサイズ			M8	M10	M12	M16	M20	M24	M27	M30	
ひび割れを想定し	ひび割れを想定しないコンクリート										
	HIT-V 5.8		18,0	29,0	42,0	70,6	111,9	153,7	187,8	224,0	
引張 N _{Rk}	HIS-N 8.8	[kN]	25,0	46,0	67,0	111,9	116,0	-	-	-	
	HIT-Z a)		24,0	38,0	54,3	88,2	122,0	ı	-	-	
	HIT-V 5.8		9,0	<i>15,0</i>	21,0	39,0	61,0	88,0	115,0	140,0	
せん断 V _{Rk}	HIS-N 8.8	[kN]	13,0	23,0	34,0	63,0	58,0	•	-	-	
	HIT-Z a)		12,0	19,0	27,0	48,0	<i>73,0</i>	-	-	-	
ひび割れを想定す	るコンクリート										
	HIT-V 5.8		15,1	21,2	35,2	50,3	79,8	109,6	133,9	159,7	
引張 N _{Rk}	HIS-N 8.8	[kN]	24,7	39,9	50,3	79,8	105,7	-	-	-	
	HIT-Z a)		21,1	30,7	41,5	62,9	86,9	-	-	-	
	HIT-V 5.8		9,0	<i>15,0</i>	21,0	39,0	61,0	88,0	115,0	140,0	
せん断 V _{Rk}	HIS-N 8.8	[kN]	13,0	23,0	34,0	63,0	58,0	-	-	-	
	HIT-Z a)		12,0	19,0	27,0	48,0	<i>73,0</i>	-	-	-	

a) ヒルティアンカーボルト HIT-Z-F: M16 および M20

設計耐力

アンカーサイズ			M8	M10	M12	M16	M20	M24	M27	M30		
ひび割れを想定し	ひび割れを想定しないコンクリート											
	HIT-V 5.8		12,0	19,3	28,0	47,1	74,6	102,5	125,2	149,4		
引張 N _{Rd}	HIS-N 8.8	[kN]	16,7	30,7	44,7	74,6	77,3	-	ı	-		
	HIT-Z a)		16,0	25,3	36,2	58,8	81,3	-	-	-		
	HIT-V 5.8		7,2	12,0	16,8	31,2	48,8	70,4	92,0	112,0		
せん断 V _{Rd}	HIS-N 8.8	[kN]	10,4	18,4	27,2	50,4	46,4	-	ı	-		
	HIT-Z a)		9,6	15,2	21,6	38,4	58,4	-	ı	-		
ひび割れを想定す	「るコンクリート											
	HIT-V 5.8		10,1	14,1	23,5	33,5	53,2	73,0	89,2	106,5		
引張 N _{Rd}	HIS-N 8.8	[kN]	16,5	26,6	33,5	53,2	70,4	-	ı	-		
	HIT-Z a)	·	14,1	20,5	27,7	41,9	58,0	-	ı	-		
せん断 V _{Rd}	HIT-V 5.8	— [kN]	7,2	12,0	16,8	31,2	48,8	70,4	92,0	112,0		
で/OE/I VRd	HIS-N 8.8	[KIN]	10,4	18,4	27,2	50,4	46,4	-	-	-		

ヒルティアンカーボルト HIT-Z-F: M16 および M20

許容安全荷重 b)

アンカーサイズ			M8	M10	M12	M16	M20	M24	M27	M30		
ひび割れを想定し	ひび割れを想定しないコンクリート											
	HIT-V 5.8		8,6	13,8	20,0	33,6	53,3	73,2	89,4	106,7		
引張 N _{Rec}	HIS-N 8.8	[kN]	11,9	21,9	31,9	53.3	55,2	-	-	-		
	HIT-Z a)		11,4	18,1	25,9	42,0	58,1	-	-	-		
	HIT-V 5.8		5,1	8,6	12,0	22,3	34,9	50,3	65,7	80,0		
せん断 V _{Rec}	HIS-N 8.8	[kN]	7,4	13,1	19,4	36,0	33,1	ı	ı	-		
	HIT-Z a)		6,9	10,9	15,4	27,4	41,7	ı	1	-		
ひび割れを想定す	「るコンクリート											
	HIT-V 5.8		7,2	10,1	16,8	24,0	38,0	52,2	63,7	76,1		
引張 N _{Rec}	HIS-N 8.8	[kN]	11,9	19,8	23,9	38,0	50,3	ı	1	-		
	HIT-Z a)		10,0	14,6	19,8	29,9	41,4	-	-	-		
	HIT-V 5.8		5,1	8,6	12,0	22,3	34,9	50,3	65,7	80,0		
せん断 V _{Rec}	HIS-N 8.8	[kN]	7,4	13,1	19,4	36,0	33,1	-	-	-		
	HIT-Z a)		6,9	10,9	15,4	27,4	41,7	-	-	-		

a) ヒルティアンカーボルト HIT-Z-F: M16 および M20

b) 部分安全係数は $\gamma = 1,4$ です。この部分安全係数は荷重の種類によって異なるため、各国の基準を採用してください。

耐震性能 (単体アンカーでの留付け)

本項の全ての数値は下記条件の場合に適用されます。

- 正しく施工されていること (ハンマードリルによる施工手順参照)へりあき、アンカーピッチの影響なし
- 下表斜字数値は鋼材破壊値
- 最小母材厚
- コンクリート圧縮強度 C 20/25, f_{ck,cube} = 25 N/mm² (JIS 規格 Fc≒21N/mm²相当) 使用温度範囲 I (最小. 母材温度. -40°C, 最大. 長期/短期 母材温度.: +24°C/40°C)
- 施工時温度範囲 -10°C to +40°C
- a_{gap} = 1,0 (耐震/充填セットの使用)

ハンマードリル穿孔、HILTI ホロードリルビットを用いたハンマードリル穿孔の場合:

耐震性能カテゴリ C2 におけるアンカー埋め込み長さ

アンカーサイズ			M8	M10	M12	M16	M20	M24	M27	M30
HIT-V										
埋込み長	h _{ef}	[mm]	-	-	-	125	170	210	-	-
HIT-Z										
有効埋込み長 ²⁾	$h_{ef} = I_{Helix}$	[mm]	-	-	60	96	100	-	-	-
有効埋込み長 ³⁾	h _{ef}	[mm]	-	-	60	96	100	-	-	-
母材厚		[mm]	-	-	170	245	280	ı	-	ı

- 2) 引き抜きとコンクリートコーンの複合破壊
- 3) コンクリートコーン状破壊

耐震性能カテゴリ C2 における 基準耐力

アンカーサイズ			M8	M10	M12	M16	M20	M24	M27	M30
ZIZE NI	HIT-V 8.8, AM 8.8	- [kN]	-	-	-	24,5	45,9	55,4	-	-
引張 N _{Rk,seis}	HIT-Z a)	- [KIN]	-	-	29,4	53,4	73,9	-	-	-
++ / lkt //	HIT-V 8.8, AM 8.8	- [kN]	-	-	-	46,0	77,0	103,0	-	-
せん断 V _{Rk,seis}	HIT-Z a)	- [KIN]	-	-	23.0	41.0	61.0	-	-	-

a) ヒルティアンカーボルト HIT-Z-F: M16 および M20

耐震性能カテゴリ C2 における 設計耐力

アンカーサイズ		M8	M10	M12	M16	M20	M24	M27	M30
引張 N _{Rd,seis}	HIT-V 8.8, AM 8.8 [kN]	-	-	-	16,3	30,6	36,9	1	ı
או אנוכי INRd,seis	HIT-Z a)	-	-	19,6	35,6	49,3	-	-	-
++ 4	HIT-V 8.8, AM 8.8 [kN]	-	-	-	36,8	61,6	82,4	-	-
せん断 V _{Rd,seis}	HIT-Z a)	-	-	18,4	32,8	48,8	-	-	-

a) ヒルティアンカーボルト HIT-Z-F: M16 および M20

耐震性能力テゴリ C1 における有効埋込み長

アンカーサイズ			M8	M10	M12	M16	M20	M24	M27	M30
HIT-V										
埋込み長	h _{ef}	[mm]	-	90	110	125	170	210	240	270
HIT-Z										
有効アンカー埋込み長 ¹⁾	$h_{ef} = I_{Helix}$	[mm]	50	60	60	96	100	-	-	-
有効埋込み長 ²⁾	h _{ef}	[mm]	60	60	60	96	100	-	ı	-
母材厚		[mm]	-	-	170	245	280	-	-	-

- 1) 引き抜きとコンクリートコーンの複合破壊2) コンクリートコーン状破壊

耐震性能カテゴリ C1 における 基準耐力

アンカーサイズ		M8	M10	M12	M16	M20	M24	M27	M30
引張 N _{Rk,seis}	HIT-V 8.8, AM 8.8	-	14,7	29,0	42,8	67,8	93,1	113,8	135,8
וא וא _{Rk,seis}	HIT-Z a); HIT-Z-R [kN]	17,9	26,1	35,3	53,4	73,9	-	-	-
	HIT-V 8.8, AM 8.8	-	23,0	34,0	63,0	98,0	141,0	184,0	224,0
せん断 V _{Rk,seis}	HIT-Z a) [kN]	7,0	17,0	16,0	28,0	45,0	-	-	-
	HIT-Z-R	8,0	19,0	22,0	31,0	48,0	-	-	-

a) ヒルティアンカーボルト HIT-Z-F: M16 および M20

耐震性能力テゴリ C1 における 設計耐力

アンカーサイズ		M8	M10	M12	M16	M20	M24	M27	M30
212E NI	HIT-V 8.8, AM 8.8	-	9,8	19,4	28,5	45,2	62,1	75,8	90,5
引張 N _{Rd,seis}	HIT-Z a); HIT-Z-R	11,9	17,4	23,5	35,6	49,3	-	-	-
	HIT-V 8.8, AM 8.8	-	18,4	27,2	50,4	78,4	112,8	147,2	179,2
せん断 V _{Rd,seis}	HIT-Z a) [kN	5,6	13,6	12,8	22,4	36,0	-	-	-
	HIT-Z-R	6,4	15,2	17,6	24,8	38,4	-	-	-

a) ヒルティアンカーボルト HIT-Z-F: M16 および M20

材料

HIT-V の材料特性

アンカーサイズ			M8	M10	M12	M16	M20	M24	M27	M30
	HIT-V 5.8 (F)		500	500	500	500	500	500	500	500
 引張強度 f _{uk}	HIT-V 8.8 (F) AM 8.8 (HDG)	[N/mm²]	800	800	800	800	800	800	800	800
	HIT-V-R		700	700	700	700	700	700	500	500
	HIT-V-HCR		800	800	800	800	800	700	700	700
	HIT-V 5.8 (F)		400	400	400	400	400	400	400	400
降伏点強度 f _{vk}	HIT-V 8.8 (F) AM 8.8 (HDG)	[N/mm²]	640	640	640	640	640	640	640	640
,	HIT-V-R		450	450	450	450	450	450	210	210
	HIT-V-HCR		640	640	640	640	640	400	400	400
応力断面積 As	HIT-V	[mm²]	36,6	58,0	84,3	157	245	353	459	561
断面係数 W	HIT-V	[mm³]	31,2	62,3	109	277	541	935	1387	1874

HIS-N の材料特性

アンカーサイズ			M8	M10	M12	M16	M20
	HIS-N		490	490	460	460	460
 引張強度 f _{uk}	Screw 8.8	— —[N/mm²]	800	800	800	800	800
「加水地域 I _{uk}	HIS-RN	[14/111111-]	700	700	700	700	700
	Screw A4-70		700	700	700	700	700
	HIS-N		410	410	375	375	375
│ │降伏点強度 f _{vk}	Screw 8.8	 [N/mm²]	640	640	640	640	640
件认思读 T _{yk}	HIS-RN	[14/111111-]	350	350	350	350	350
	Screw A4-70		450	450	450	450	450
応力断面積 As	HIS-(R)N	[mm2]	51,5	108,0	169,1	256,1	237,6
ルレノ」的1回作(A _S 	Screw	— [mm²]	36,6	58	84,3	157	245
账而 <i>尽</i> 粉 W	HIS-(R)N	[mm3]	145	430	840	1595	1543
断面係数 W	Screw	— [mm³]	31,2	62,3	109	277	541

HIT-Z の材料特性

アンカーサイズ			M8	M10	M12	M16	M20
21.11.23	HIT-Z(-F) a)	[N] /mama 2]	650	650	650	610	595
引張強度 f _{uk}	HIT-Z-R	— [N/mm²]	650	650	650	610	595
吹件占改度 f	HIT-Z(-F) a)	[N/mm2]	520	520	520	490	480
降伏点強度 f _{yk}	HIT-Z-R	— [N/mm²]	520	520	520	490	480
応力断面積 As	HIT-Z(-F) ^{a)} HIT-Z-R	[mm²]	36,6	58,0	84,3	157	245
断面係数 W	HIT-Z(-F) ^{a)} HIT-Z-R	[mm³]	31,9	62,5	109,7	278	542

a) ヒルティアンカーボルト HIT-Z-F: M16 および M20

HIT-V の材料品質

部材	材質
亜鉛メッキ鋼	
全ねじボルト HIT-V 5.8 (F)	強度区分 5.8; 破断 A5 > 8% 伸び率 電気亜鉛めっき ≥ 5μm; (F) 溶融亜鉛めっき ≥ 45 μm
全ねじボルト HIT-V 8.8 (F)	強度区分 8.8; 破断 A5 > 12%伸び率 電気亜鉛めっき ≥ 5μm; (F) 溶融亜鉛めっき ≥ 45 μm
ワッシャー	電気亜鉛めっき ≥ 5 μm, 溶融亜鉛めっき ≥ 45 μm
ナット	ナットの強度区分 adapted to 全ねじボルトの強度区分. 電気亜鉛めっき ≥ 5 μm, 溶融亜鉛めっき ≥ 45 μm
フィリングワッシャ ーセット(F)	フィリングワッシャー: 電気亜鉛めっき ≥ 5 μm, 溶融亜鉛めっき ≥ 45 μm 球座ワッシャー: 電気亜鉛めっき ≥ 5 μm / (F) 溶融亜鉛めっき ≥ 45 μm ロックナット: 電気亜鉛めっき ≥ 5 μm / (F) 溶融亜鉛めっき ≥ 45 μm
ステンレス鋼	
全ねじボルト HIT-V-R	強度区分 70 の場合 ≤ M24 および強度区分 50 の場合 > M24; 破断 A5 > 8%伸び率 ステンレス鋼 1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362
ワッシャー	ステンレス鋼 1.4401, 1.4404, 1.4578, 1.4571, 1.4439, 1.4362 EN 10088- 1:2014
ナット	ステンレス鋼 1.4401, 1.4404, 1.4578, 1.4571, 1.4439, 1.4362 EN 10088- 1:2014
高耐腐食性ステンレス	鋼
全ねじボルト HIT-V-HCR	強度区分 80 ≤ M20 および強度区分 70 > M20, 破断 A5 > 8%伸び率 高耐腐食ステンレス鋼 1.4529; 1.4565;
ワッシャー	高耐腐食ステンレス鋼 1.4529, 1.4565 EN 10088-1:2014
ナット	高耐腐食ステンレス鋼 1.4529, 1.4565 EN 10088-1:2014

HIS-N の材料品質

部材		材質
	内ねじスリーブ	電気亜鉛めっき ≥ 5 µm
HIS-N	スクリュー 8.8	強度区分 8.8, A5 > 8 % 延び率; 亜鉛めっき鋼 ≥ 5 μm
HIS-RN	内ねじスリーブ	ステンレス鋼 1.4401,1.4571
III3-KIN	スクリュー 70	強度区分 70, A5 > 8 % 延び率; ステンレス鋼 1.4401; 1.4404, 1.4578; 1.4571; 1.4439; 1.4362

HIT-Z の材料品質

部材	材質
全ねじボルト HIT-Z	破断> 8% 伸び率; 電気亜鉛めっきコーティング ≥ 5 μm
ワッシャー	電気亜鉛めっき ≥ 5 μm
ナット	ナットの強度区分はアンカーボルトの強度区分と同等
791	電気亜鉛めっき ≥ 5 μm
UIT 7 E	破断> 8% 伸び率
HIT-Z-F	多層コーティング, ZnNi-亜鉛めっき (DIN 50979:2008-07)
ワッシャー	多層コーティング, ZnNi-亜鉛めっき (DIN 50979:2008-07)
ナット	多層コーティング, ZnNi-亜鉛めっき (DIN 50979:2008-07)
HIT-Z-R	破断> 8% 伸び率; ステンレス鋼 1.4401, 1.4404 EN 10088-1:2014
ワッシャー	ステンレス鋼 A4 10088-1:2014
ナット	ナットの強度区分はアンカーボルトの強度区分と同等
791	ステンレス鋼 1.4401, 1.4404 EN 10088-1:2014

施工条件

使用温度範囲

アンカーボルト HIT-V / HIS-(R)N を用いた HIT-HY 200 A (R) 注入方式アンカーは以下の 温度範囲にて適用されます。 母材温度の上昇により、設計付着強度が低下する場合があります。

母材温度

温度範囲	母材温度	長期最大母材温度	短期最大母材温度
温度範囲 I	-40 °C to +40 °C	+24 °C	+40 °C
温度範囲 II	-40 °C to +80 °C	+50 °C	+80 °C
温度範囲 III	-40 °C to +120 °C	+72 °C	+120 °C

短期最大母材温度

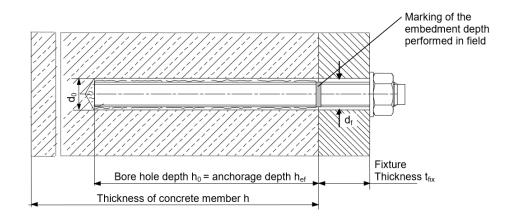
一日程度の短いサイクルの気温の変化に伴って、母材温度が変化するときの最大母材温度を指します。

長期最大母材温度

長期間にわたる継続的な気温変化に伴って、母材温度が変化するときの最大母材温度を指します。

ゲル状時間、硬化時間

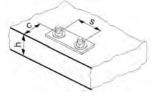
	HIT-HY	′ 200-A	HIT-HY	′ 200-R
母材温度	最大ゲル状時間	最小硬化時間	最大ゲル状時間	最小硬化時間
	t_{work}	t _{cure}	t _{work}	t _{cure}
-10 °C $<$ $T_{BM} \le -5$ °C	1,5 時間	7 h 時間	3 時間	20 時間
$-5^{\circ}C < T_{BM} \le 0^{\circ}C$	50 分	4 時間	2 時間	8 時間
$0^{\circ}C < T_{BM} \le 5^{\circ}C$	25 分	2 時間	1 時間	4 時間
$5^{\circ}\text{C} < \text{T}_{\text{BM}} \le 10^{\circ}\text{C}$	15 分	75 分	40 分	2,5 h 時間
$10^{\circ}\text{C} < \text{T}_{\text{BM}} \le 20^{\circ}\text{C}$	7分	45 分	15 分	1,5 時間
20 °C $< T_{BM} \le 30$ °C	4分	30分	9分	1 時間
$30^{\circ}\text{C} < \text{T}_{\text{BM}} \le 40^{\circ}\text{C}$	3分	30分	6分	1 時間

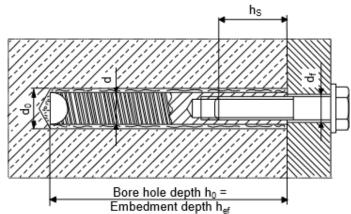

HIT-V の施工条件詳細

アンカーサイズ			M8	M10	M12	M16	M20	M24	M27	M30
穿孔径(ビット呼び径)	d	[mm]	10	12	14	18	22	28	30	35
有効埋込み長と穿孔長 ^{a)}	$\frac{h_{ef,min}}{h_{ef,max}}$	[mm] [mm]	60 160	60 200	70 240	80 320	90 400	96 480	108 540	120 600
最小母材厚	h _{min}	[mm]	h _{ef} +	30 mm mm	≥100		ŀ	n _{ef} + 2 d	0	I
取付物の最大下穴径	d_{f}	[mm]	9	12	14	18	22	26	30	33
フィリングセット厚	h _{fs}	[mm]	-	-	ı	11	13	15	-	-
フィリングセット使用時 取付物厚	$t_{fix,eff}$	[mm]				$t_{fix,eff}$	- h _{fs}			
最大締付けトルク ^{D)}	T_{max}	[Nm]	10	20	40	80	150	200	270	300
最小アンカーピッチ	S _{min}	[mm]	40	50	60	75	90	115	120	140
最小へりあき寸法	C _{min}	[mm]	40	45	45	50	55	60	75	80
割裂破壊による 基準アンカーピッチ	S _{cr,sp}	[mm]				2 c	cr,sp			
			1,0	h _{ef}	for h	$/ h_{ef} \ge$	2,00	h/h _{nom}		
割裂破壊による 基準へりあき寸法 ^{c)}	C _{cr,sp}	[mm]	4,6 h _{ef}	- 1,8 h	for 2,00	> h / h	_{ef} > 1,3	1,35		
			2,26	h _{ef}	for h	ı / h _{ef} ≤	1,3	1,:	5·h _{nom} 3,5	c _{cr,sp}
コンクリートコーン状破壊 による基準アンカーピッチ	S _{cr,N}	[mm]				2 C	cr,sp			
コンクリートコーン状破壊 による基準へりあき寸法 ^{d)}	C _{cr,N}	[mm]		1,5 h _{ef}						

基準アンカーピッチ(基準へりあき寸法)より狭いアンカーピッチ(へりあき寸法)の場合、設計荷重は低減して下さい。

- a) $h_{ef,min} \leq h_{ef} \leq h_{ef,max}$ (h_{ef} : 有効埋め込み長)
- b) 施工時,アンカーに対して基準アンカーピッチや基準へりあき寸法においても割裂破壊を起こさないよう考慮された最大締付けトルク値
- c) h: 基準母材厚 (h ≥ h_{min})
- d) コンクリートコーン状破壊による基準へりあき寸法は、有効埋込み長 hef と設計付着強度による 影響を受けます。上表の簡易式は安全側にて検討されています。




HIS-N の施工条件詳細

アンカーサイズ			M8	M10	M12	M16	M20
穿孔径(ビット呼び径)	d_0	[mm]	14	18	22	28	32
アンカー直径	d	[mm]	12,5	16,5	20,5	25,4	27,6
有効埋込み長と穿孔径	h _{ef}	[mm]	90	110	125	170	205
最小母材厚	h_{\min}	[mm]	120	150	170	230	270
取付物の下穴径	d_f	[mm]	9	12	14	18	22
ねじの嵌合長さ:最小-最大	hs	[mm]	8-20	10-25	12-30	16-40	20-50
最小アンカーピッチ	S _{min}	[mm]	60	75	90	115	130
最小へりあき寸法	C _{min}	[mm]	40	45	55	65	90
割裂破壊による基準アンカーピッチ	S _{cr,sp}	[mm]			2 c _{cr,sp}		
			1,0 · h _{ef}	for h /	$h_{ef} \ge 2.0$	h/h _{ef}	
割裂破壊による基準へりあ き寸法 ^{b)}	C _{cr,sp}	[mm]	4,6 h _{ef} - 1,8	h for 2,0 > h	$h / h_{ef} > 1,3$	1,3	
			2,26 h _{ef}	for h ,	$h_{\rm ef} \leq 1.3$	1,0 h _{ef}	2,26 hef
コンクリートコーン状破壊 による基準アンカーピッチ	S _{cr,N}	[mm]			2 c _{cr,N}		
コンクリートコーン状破壊 による基準へりあき寸法 ⁰	C _{cr,N}	[mm]			1,5 h _{ef}		
最大締付けトルク a)	T_{max}	[Nm]	10	20	40	80	150

基準アンカーピッチ(基準へりあき寸法)より狭いアンカーピッチ(へりあき寸法)の場合、設計荷重は低減して下さい。

- a) 施工時,アンカーに対して基準アンカーピッチや基準へりあき寸法においても割裂破壊を起こさないよう考慮された最大締付けトルク値。
- b) h: 基準母材厚 (h ≥ h_{min})
- c) コンクリートコーン状破壊による基準へりあき寸法は、有効埋込み長 hef と設計付着強度による影響を受けます。上表の簡易式は安全側にて検討されています。

HIT-Z, HIT-Z-F および HIT-Z-R の施工条件詳細

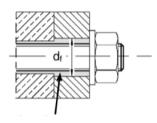
アンカーサイズ			M8	M10	M12	M16	M20	
穿孔径(ビット呼び径)	d_0	[mm]	10	12	14	18	22	
アンカー長	min l	[mm]	80	95	105	155	215	
7 273 R	max l	[mm]	120	160	196	420	450	
埋込み長範囲 a)	h _{nom,mi}	[]	60	60	60	96	100	
	h _{nom,m}	[mm]	100	120	144	192	220	
穿孔穴状態 1 最小母材厚	h _{min}	[mm]	ŀ	n _{nom} + 60 mn	n	h _{nom} + 1	100 mm	
穿孔穴状態 2 最小母材厚	h _{min}	[mm]		n _{nom} + 30 mn ≥100 mm	h _{nom} +	h _{nom} + 45 mm ≥45 mm		
最大ドリル穿孔長	h_0	[mm]		h – 30 mm		h – 2 d ₀		
先穿孔: 取付物穴径	d_f	[mm]	9	12	14	18	22	
現物合わせ: 取付物穴径	d_f	[mm]	11	14	16	20	24	
最大取付物厚	t_{fix}	[mm]	48	87	120	303	326	
耐震充填セットを用いた 場合の最大取付物厚	$t_{\text{fix}} \\$	[mm]	41	79	111	292	314	
最大締付けトルクり	T_{inst}	[Nm]	10	25	40	80	150	
割裂破壊による基準アンカーピッチ	S _{cr,sp}	[mm]			2 c _{cr,sp}			
			1,5 · h _{nom}	for h /	$h_{nom} \ge 2,35$	h/h _{nom} 2,35		
割裂破壊による基準へりあ き寸法 ^{c)}	C _{cr,sp}	[mm]	6,2 h _{nom} - 2,0	0 h for 2,35 >	$h / h_{nom} > 1,3$	5 1,35		
			3,5 h _{nom}	for h / l	nnom ≤ 1,35	1,5·h _{nom}	3,5·h _{nom} c _{cr,sp}	
コンクリートコーン状破壊 による基準アンカーピッチ	S _{cr,N}	[mm]			2 C _{cr,N}			
コンクリートコーン状破壊 による基準へりあき寸法 ^{d)}	C _{cr,N}	[mm]	1,5 h _{nom}					

基準アンカーピッチ(基準へりあき寸法)より狭いアンカーピッチ(へりあき寸法)の場合、設計荷重は低減して下さい。

- a) hef: 有効埋込み長 $h_{\text{ef,min}} \leq h_{\text{ef}} \leq h_{\text{ef,max}}$
- b) 施工時, アンカーに対して基準アンカーピッチや基準へりあき寸法においても割裂破壊を起こさないよう 考慮された最大締付けトルク値。
- c) h: 基準母材厚 (h ≥ h_{min}), hef: 有効埋込み長
- d) コンクリートコーン状破壊による基準へりあき寸法は、有効埋込み長 hef と設計付着強度による影響を受け ます。上表の簡易式は安全側にて検討されています。

穿孔作業:

取付物を固定する前にアンカーを施工

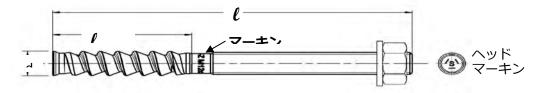

Drill hole $h_0 > h_{nom}$ condition h_{nom} (1)**Drill hole** condition (2) $h_0 = h_{nom}$ t_{fix}

h

穿孔穴状態 1 → 清掃されていない 穿孔穴状態 2 → 切粉が十分に除去されている

現物合わせ:

取付物を所定の位置に固定した 状態でアンカーを施工

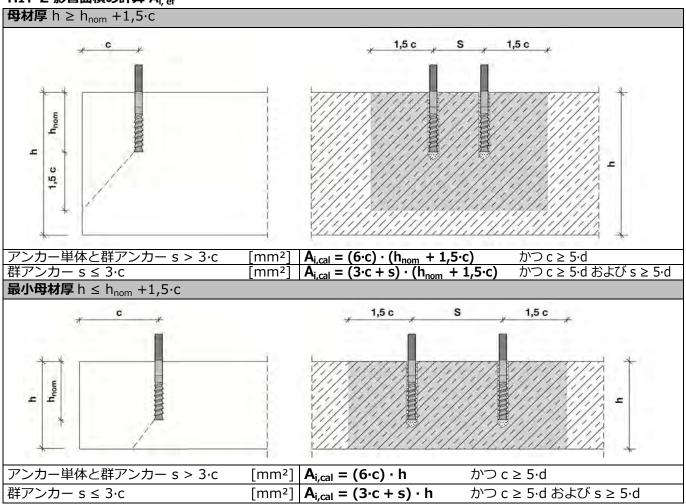


取付物穴の隙間を Hilti HIT-HY 200-A で埋める

HIT-Z のアンカー寸法

アンカーサイズ			M8	M10	M12	M16	M20
アンカー全長	min l	[mm]	80	95	105	155	215
	max l	[mm]	120	160	196	420	450
らせん部長さ	l _{Helix}	[mm]	50	60	60	96	100

HIT-Z の最小へりあきと最小アンカーピッチ


最小へりあきと最小アンカーピッチの算出時に、埋込み長と母材厚の組み合わせが上表と異なる場合は、 以下に示す条件式を満たしていなければなりません。

$$A_{i,req} < A_{i,cal}$$

HIT-Z 必要な影響面積 Ai.cal

アンカーサイズ		M8	M10	M12	M16	M20
ひび割れを想定するコンクリート	[mm²]	19200	40800	58800	94700	148000
ひび割れを想定しないコンクリート	[mm²]	22200	57400	80800	128000	198000

HIT-Z 影響面積の計算 A_{i, ef}

必要な母材厚と埋め込み長が確保されている場合の最小へりあき寸法と最小アンカーピッチ

アンカーサイズ			M8	M10	M12	M16	M20
ひび割れを想定するコンク	リート						
母材厚	h ≥	[mm]	140	200	240	300	370
有効埋め込み長	h _{nom} ≥	[mm]	80	120	150	200	220
最小アンカーピッチ	S _{min}	[mm]	40	50	60	80	100
対応するへりあき寸法	C ≥	[mm]	40	55	65	80	100
最小へりあき寸法	c _{min} =	[mm]	40	50	60	80	100
対応アンカーピッチ	S≥	[mm]	40	60	65	80	100
ひび割れを想定しないコン	クリート						
母材厚	h ≥	[mm]	140	230	270	340	410
有効埋め込み長	h _{nom} ≥	[mm]	80	120	150	200	220
最小アンカーピッチ	S _{min}	[mm]	40	50	60	80	100
対応するへりあき寸法	C ≥	[mm]	40	70	80	100	130
最小へりあき寸法	C _{min}	[mm]	40	50	60	80	100
対応アンカーピッチ	s≥	[mm]	40	145	160	160	235

必要な母材厚と埋め込み長が確保されている場合の最小へりあき寸法と最小アンカーピッチ (穿孔穴状態 1)

						(, ,				
アンカーサイズ			M8	M10	M12	M16	M20				
ひび割れを想定するコンクリート											
母材厚	h ≥	[mm]	120	120	120	196	200				
有効埋め込み長	h _{nom} ≥	[mm]	60	60	60	96	100				
最小アンカーピッチ	S _{min}	[mm]	40	50	60	80	100				
対応するへりあき寸法	C ≥	[mm]	40	100	140	135	215				
最小へりあき寸法	c _{min} =	[mm]	40	60	90	80	125				
対応アンカーピッチ	S ≥	[mm]	40	160	220	235	365				
ひび割れを想定しないコ	ンクリート										
母材厚	h ≥	[mm]	120	120	120	196	200				
有効埋め込み長	h _{nom} ≥	[mm]	60	60	60	96	100				
最小アンカーピッチ	S _{min}	[mm]	40	50	60	80	100				
対応するへりあき寸法	C ≥	[mm]	50	145	200	190	300				
最小へりあき寸法	C _{min}	[mm]	40	80	115	110	165				
対応アンカーピッチ	s ≥	[mm]	65	240	330	310	495				

最小へりあきとアンカーピッチについての説明

最小へりあきとアンカーピッチの値は、2本のアンカーを決められた間隔でへり近くに打設し、締付けトルクをかけてもコンクリートにひび割れが発生しない施工条件で試験を実施して決定しています。

HIT-Z ボルトのへりあきとアンカーピッチの値は、上表を参照して下さい。もし、埋込み長さとコンクリートスラブの厚さが上表の値以上の場合は、上表中の該当するへりあきとアンカーピッチを用いることができます。

PROFIS アンカーソフトウェア設計は、以下の変数に基づいて最適な最小へりあき寸法および最小アンカーピッチを決定できる計算式がプログラムされています。

ひび割れを想定したコンクリート /ひび割れを想定しないコンクリ ート	ひび割れを想定したコンクリートの場合、ひび割れ幅を 0.3mm に制限する補強材を用いることで最小へりあき寸法と最小アンカーピッチの値を小さくすることができます。
アンカー寸法	小さいトルク値を設定することでより小さいアンカー寸法が可能となり、
	最小へりあき寸法と最小アンカーピッチを小さくすることができます。
母材厚および有効埋込み長	これらの値を小さくすると最小へりあき寸法と最小アンカーピッチを小さ
	くすることができます。

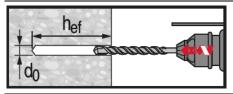
標準施工工具

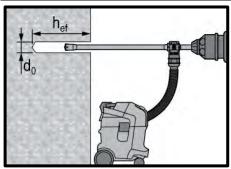
アンカーサイズ		M8	M10	M12	M16	M20	M24	M27	M30	
	HIT-V		TE 2 -	TE 16		TE 40 - TE 80				
ロータリー ハンマードリル	HIT-Z	T	E 2 – TE 4	0	TE 40 -	- TE 80	-			
/ / / / / / / / / / / / / / / / / / / /	HIS-N	TE (-A) -	TE 16(-A)	TE	40 – TE	30		-		
他の工具 エアーコンプレッサーまたはダストポンプ, ブラシ, ディスペンサ-							_			

推奨される清掃・穿孔と取付物

			穿孔径(ビット呼	び径) d _o [mm]	清掃と	取付物
HIT-V	HIT-Z	HIS-N	ハンマードリル (HD)	ホロー ビット (HDB)	ブラシ HIT-RB	ピストンプラグ HIT-SZ
mmmmmm Bw		Mulaninani				
M8	M8	-	10	-	10	-
M10	M10	-	12	12	12	12
M12	M12	M8	14	14	14	14
M16	M16	M10	18	18	18	18
M20	M20	M12	22	22	22	22
M24	-	M16	28	28	28	28
M27	-	-	30	-	30	30
-	-	M20	32	32	32	32
M30	-	-	35	35	35	35

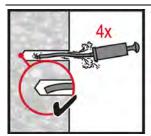
HIS-N アンカースリーブの HIT-V ボルトでの施工手順

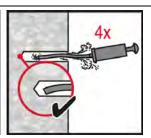

*施工工具の詳細については製品パッケージに記載の使用説明書をご覧ください。


安全規制

適切で安全な取り扱いのために、事前に材料安全データシート (MSDS)をご確認ください。 HIT-HY 200 A (R)を取り扱う際には適した保護ゴーグルと保護手袋を着用してください。

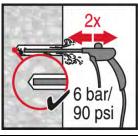
穿孔

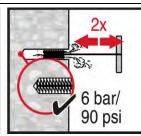

ハンマードリル穿孔 (HD)

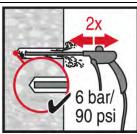

ヒルティホロービット穿孔 (HDB)

清掃不要

孔内清掃

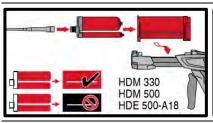


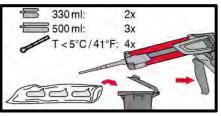




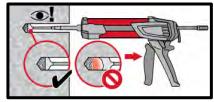
手動清掃 (MC)

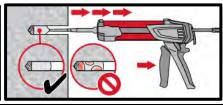
ビット呼び径が 20mm 以下および穿孔 長 10d 以下の条件に適用

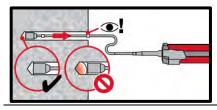


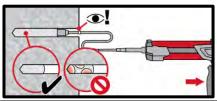

エアコンプレッサーによる清掃 (CAC)

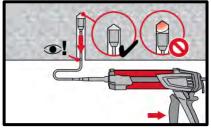
ビット呼び径および穿孔長が

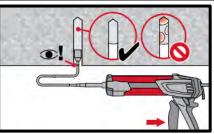

20mm 以下の条件に適用

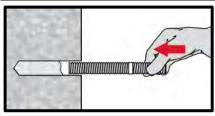

樹脂注入

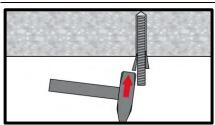

注入準備



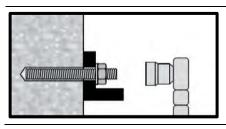

穿孔長 h_{ef} ≤ 250 mm の注入方法




穿孔長 $h_{ef} > 250$ mm の注入方法



上向きもしくは有効埋込み長さが 250mm を超える場合の注入方法

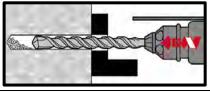

アンカー筋の挿入

ゲル状時間が経過する前にアンカー筋を 挿入

ゲル状時間が経過する前に上向きにアン カー筋を挿入

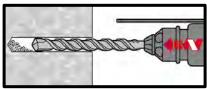
硬化時間 t_{cure}が過ぎてからアンカー筋に 荷重をかける

HIT-Z ボルト 施工手順

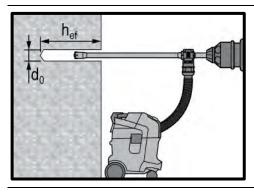

*施工工具の詳細については製品パッケージに記載の使用説明書をご覧ください。

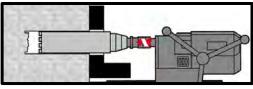
安全規制

適切で安全な取り扱いのために、事前に材料安全データシート (MSDS)をご確認ください。 HIT-HY 200 A (R)を取り扱う際には適した保護ゴーグルと保護手袋を着用してください。

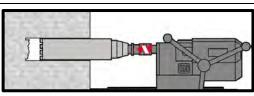

穿孔

ハンマードリル: 現物合わせ


清掃不要

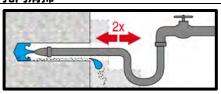

ハンマードリル: 先穿孔

清掃不要



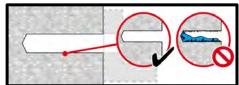
ホロービットを用いたハンマードリル: 現物合わせ / 先穿孔

清掃不要

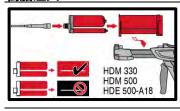


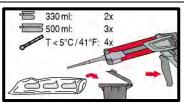
ダイヤモンドコアドリル: 現物合わせ

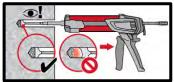
ダイヤモンドコアドリル: 先穿孔

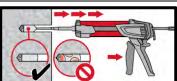

孔内清掃

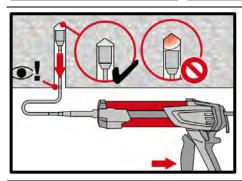
湿式ダイヤモンドコアドリル穿孔時は孔 内洗浄が必要






湿式ダイヤモンドコアドリル穿孔時は孔 内清掃が必要


樹脂注入

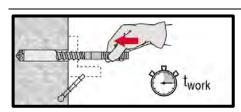


注入準備

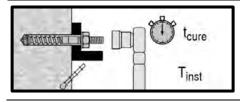


必ず孔底から開始して気泡が残らなよう に注入する

上向き施工は延長ホースとピストンプラ グを用いて樹脂を注入


現物合わせ:

穿孔長 100%までを充填


穿孔作業:

穿孔長の 2/3 まで充填

アンカー筋の挿入

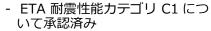
ゲル状時間が経過するまでに、アンカー筋を必要な埋込み長まで挿入してください。

アンカー筋に荷重をかける:

硬化時間経過後

HIT-HY 200 接着系注入方式アンカー

接着系注入方式アンカーシステム



Hilti HIT-HY200-A 500ml フォイルパック (330ml あり)

Hilti HIT-HY200-R 500ml フォイルパック

(330ml あり)

- セーフセット工法: ヒルティのホロードリルビットによる穿孔と同時に吸塵する工法

ひび割れを想定しない又はひび 割れを想定するコンクリート C12/15-C 50/60 に適用

- 湿式/乾式コンクリートに適応可能

- 高耐力

特長

- 狭いへりあきとアンカーピッチ も対応可能

- 使用温度範囲が短期:120°C/ 長期:72°Cに上昇

- 太径にも対応

- 硬化時間 2 種類の樹脂: HY 200-R は低速硬化 HY 200-A は高速硬化

DA COMPANION FRANCISCO PARTICIPA DE LA SECUCIÓN DE

鉄筋 B500 B (\$8 - \$32)

母材

ひび割れを想定しない コンクリート

ひび割れを想定する コンクリート

乾式コンクリート

湿式 コンクリート

施工条件

静的/ 準静的荷重

耐震性能, ETA-C1

耐火

施工条件 その他の情報

ハンマードリル 埋め込み長の 穿孔 増減に対応

ヒルティ **セーフセット**

工法

狭いへりあ きとアンカ ーピッチ

ETA

CE 適合

PROFIS ア ンカー設計 ソフト対応

承認 / 証明

種類	機関 / 研究所	No. / 発行年月日
ETA 欧州技術認証 ^{a)}	DIBt, Berlin	ETA-11/0493 / 2017-07-28
ETA 欧州技術認証	DIBT, Berlin	ETA-12/0084 / 2017-02-03

a) 本章における全てのデータは 2017 年 7 月 28 日発行の ETA-11/0493 および 2017 年 3 月 12 日発行の ETA-12/0084 に基づいていま す。

静的または準静的負荷 (単体留付けアンカー)

本項の全ての数値は下記条件の場合に適用されます。

- -正しく施工されていること (施工手順参照) -へりあき、アンカーピッチの影響なし
- 下表斜字数値は鋼材破壊値
- -基準母材厚は表による
- -標準有効埋め込み長は表による
- -アンカー材質は表による
- -コンクリート圧縮強度 C 20/25, f_{ck,cube} = 25 N/mm² (JIS 規格 Fc≒21N/mm²相当)
- -使用温度範囲 I

(最小. 母材温度. -40°C, 最大. 長期/短期 母材温度.: +24°C/40°C)

静的または準静的荷重データに対する有効埋め込み長と母材厚

アンカーサイズ		ф8	φ10	φ12	φ14	φ16	ф20	φ25	φ26	ф28	ф30	ф32
有効埋め込み長	[mm]	80	90	110	125	145	170	210	230	270	285	300
母材厚	[mm]	110	120	145	165	185	220	275	295	340	360	380

基準耐力

アンカーサイズ		ф8	φ10	φ12	φ14	φ16	φ20	φ25	φ26	φ28	φ30	φ32
ひび割れを想定しないコンクリート												
引張 N _{Rk}	kN]	24,1	33,9	49,8	66,0	70,6	111,9	153,7	187,8	224,0	224,0	262,4
せん断 V _{Rk}	KIN	14,0	22,0	31,0	42,0	55,0	86,0	135,0	146,0	169,0	194,0	221,0
ひび割れを想定するコンクリート												
引張 N _{Rk}	kN]		14,1	29,0	38,5	44,0	74,8	109,6	133,9	159,7	159,7	187,1
せん断 V _{Rk}	[KIN]	-	22,0	31,0	42,0	55,0	86,0	135,0	146,0	169,0	194,0	221,0

設計耐力

アンカーサイズ		φ8	φ10	φ12	φ14	φ16	φ20	φ25	φ26	φ28	φ30	φ32
ひび割れを想定しないコンクリート												
引張 N _{Rd}	[kN]	16,1	22,6	33,2	44,0	47,1	74,6	102,5	125,2	149,4	149,4	174,9
せん断 V _{Rd}	[KIN]	9,3	14,7	20,7	28,0	36,7	57,3	90,0	97,3	112,7	129,3	147,3
ひび割れを想定するコンク	ひび割れを想定するコンクリート											
引張 N _{Rd}	[kN]	-	9,4	19,4	25,7	29,3	49,8	73,0	89,2	106,5	106,5	124,7
せん断 V _{Rd}	[KIN]	-	14,7	20,7	28,0	36,7	57,3	90,0	97,3	112,7	129,3	147,3

許容安全荷重

アンカーサイズ		φ8	φ10	φ12	φ14	φ16	φ20	φ25	φ26	φ28	φ30	φ32
ひび割れを想定しないコンクリート												
引張 N _{Rec}	N] -	11,5	16,2	23,7	31,4	33,6	53,3	73,2	89,4	106,7	106,7	125,0
せん断 V _{Rec}	ואין [6,7	10,5	14,8	20,0	26,2	41,0	64,3	69,5	80,5	92,4	105,2
ひび割れを想定するコンクリート												
引張 N _{Rec}	N] -	-	6,7	13,8	18,3	20,9	35,6	52,2	63,7	76,1	76,1	89,1
せん断 V _{Rec}	[ווו	-	10,5	14,8	20,0	26,2	41,0	64,3	69,5	80,5	92,4	105,2

部分安全係数は $\gamma=1,4$ です。この部分安全係数は荷重の種類によって異なるため、各国の基準を採用してください。

耐震荷重 (単体留付けアンカー)

本項の全ての数値は下記条件の場合に適用されます。

正しく施工されていること (施工手順参照) - へりあき、アンカーピッチの影響なし - 下表斜字数値は鋼材破壊値

- 最小母材厚
- コンクリート圧縮強度 C 20/25, f_{ck,cube} = 25 N/mm² (JIS 規格 Fc≒21N/mm²相当) 使用温度範囲 I (最小. 母材温度. -40°C, 最大. 長期/短期 母材温度.: +24°C/40°C)
- $a_{gap} = 1,0$

耐震 C1 認証における 有効埋め込み長と母材厚

アンカーサイズ		φ8	φ10	φ12	φ14	φ16	φ20	φ25	ф26	φ28	φ30	φ32
有効埋込み長	[mm]	-	90	110	125	145	170	210	230	270	285	300
母材厚	[mm]	-	120	145	165	185	220	275	295	340	360	380

耐震 C1 認証における 基準耐力

アンカーサイズ	ф8	φ10	φ12	φ14	φ16	φ20	φ25	φ26	φ28	φ30	φ32
引張 N _{Rk, seis}	-	12,4	25,3	33,5	38,3	65,2	93,1	113,8	135,8	135,8	159,0
せん断 V _{Rk, seis} [kN]	-	15,0	22,0	29,0	39,0	60,0	95,0	102,0	118,0	136,0	155,0

耐震 C1 認証における 設計耐力

アンカーサイズ	φ8	φ10	φ12	φ14	φ16	φ20	φ25	φ26	φ28	φ30	φ32
引張 N _{Rd, seis}	-	8,3	16,9	22,4	25,6	43,4	62,1	75,8	90,5	90,5	106,0
せん断 V _{Rd, seis} [kN]	-	10,0	14,7	19,3	26,0	40,0	63,3	68,0	78,7	90,7	103,3

材料

機械的特性

アンカーサイズ		φ8	φ10	φ12	φ14	φ16	φ20	φ25	φ26	φ28	φ30	φ32
引張強度 f _{uk}	[N/mm²]	550	550	550	550	550	550	550	550	550	550	550
降伏点強度 fyk	[N/mm²]	500	500	500	500	500	500	500	550	500	550	500
応力断面積 As	[mm²]	50,3	78,5	113,1	153,9	201,1	314,2	490,9	530,9	615,8	706,9	804,2
断面係数 W	[mm³]	50,3	98,2	169,6	269,4	402,1	785,4	1534	1726	2155	2651	3217

材料品質

部材	材料
鉄筋 EN 1992-1-1:2004 and AC:2010	Bars and de-coiled rods class B or C according to NDP or NCL of EN 1992-1-1/NA:2013

施工条件

施工温度範囲

- 10°C to + 40°C

使用温度範囲

HIT-HY 200 A (R) 注入方式アンカーは以下の 温度範囲にて適用されます。 母材温度の上昇により、設計付着強度が低下する場合があります。

温度範囲	母材温度	長期最大母材温度	短期最大母材温度
温度範囲 I	-40 °C to + 40 °C	+ 24 °C	+ 40 °C
温度範囲 II	-40 °C to + 80 °C	+ 50 °C	+ 80 °C
温度範囲 III	-40 °C to + 120 °C	+ 72 °C	+ 120 °C

短期最大母材温度

一日程度の短いサイクルの気温の変化に伴って、母材温度が変化するときの最大母材温度を指します。

長期最大母材温度

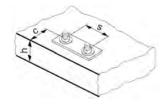
長期間にわたる継続的な気温変化に伴って、母材温度が変化するときの最大母材温度を指します。

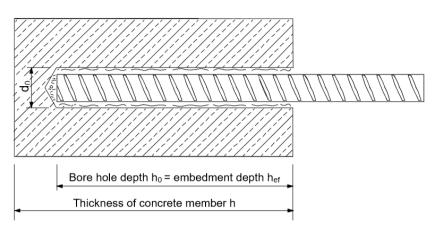
ゲル状時間、硬化時間

	HIT-HY	′ 200-A	HIT-HY	′ 200-R
母材温度	最大ゲル状時間	最小硬化時間	最大ゲル状時間	最小硬化時間
	t _{work}	t _{cure}	t _{work}	t _{cure}
-10 °C $<$ $T_{BM} \le -5$ °C	1.5 時間	7 時間	3 時間	20 時間
$-5^{\circ}C < T_{BM} \le 0^{\circ}C$	50 分	4 時間	2 時間	8 時間
$0^{\circ}\text{C} < \text{T}_{\text{BM}} \le 5^{\circ}\text{C}$	25 分	2 時間	1 時間	4 時間
5°C < T _{BM} ≤ 10°C	15 分	75 分	40 分	2.5 時間
$10^{\circ}\text{C} < \text{T}_{\text{BM}} \le 20^{\circ}\text{C}$	7分	45 分	15 分	1.5 時間
20°C < T _{BM} ≤ 30°C	4分	30分	9分	1 時間
$30^{\circ}\text{C} < \text{T}_{\text{BM}} \le 40^{\circ}\text{C}$	3分	30 分	6分	1 時間

施工工具

アンカーサイズ	φ8	φ10	φ12	φ14	φ16	φ20	φ25	φ26	φ28	φ30	φ32
ロータリーハンマードリル	Т	E 2 (-A	4) – TE	16 (-A	۸)	TE 40 – TE 80					
他の工具	I	エアーコンプレッサーまたはダストポンプ, ブラシ, ディス^							ペンサ	_	




施工条件詳細

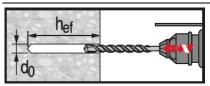
アンカーサイズ			Ø8	Ø10	Ø12	Ø14	Ø16	Ø20	Ø25	Ø26	Ø28	Ø30	Ø32
穿孔径 (ビット呼び径)	d_0	[mm]	10 / 12 ^{a)}	12 / 14 ^{a)}	14 / 16 ^{a)}	18	20	25	32	32	35	37	40
有効埋込み長と	$h_{\text{ef,min}}$	[mm]	60	60	70	75	80	90	100	104	112	120	128
穿孔長 ^{b)}	h _{ef,max}	[mm]	160	200	240	280	320	400	500	520	560	600	640
最大母材厚	h _{min}	[mm]	h _{ef} + 30 mm ≥ 100 mm				$h_{ef} + 2 d_0$						
最小アンカー ピッチ	S _{min}	[mm]	40	50	60	70	80	100	125	130	140	150	160
最小へりあき寸法	C _{min}	[mm]	40	45	45	50	50	65	70	75	75	80	80
割裂破壊による 基準アンカーピッ チ	S _{cr,sp}	[mm]	2 C _{cr,sp}										
		[mm]		1,0 · h	1 _{ef}	fo	r h / h	$_{\rm ef} \geq 2,0$)	h _{ef} t			
割裂破壊による基 準へりあき寸法 ^{c)}	C _{cr,sp}		4,6	5 h _{ef} -	1,8 h	for	for 2,0 > h / h _{ef} > 1,3						
				2,26 l	1 _{ef}	fo	rh/h	$_{\rm ef} \leq 1.3$	3	1	1,0-h _{ef}	2,26 h _{ef}	C _{cr.sp}
コンクリートコー ン状破壊による基 準アンカーピッチ		[mm]	2 C _{cr,N}										
コンクリートコー ン状破壊による基 準へりあき ^{d)}	C _{cr,N}	[mm]		1,5 h _{ef}									

基準アンカーピッチ(基準へりあき)より狭いアンカーピッチ(へりあき)の場合、設計荷重は低減して下さい。

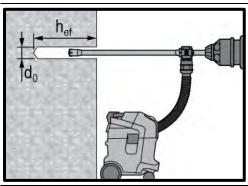
- a) どちらの穿孔径を用いても問題ありません。
- b) h_{ef,min} ≤ h_{ef} ≤ h_{ef,max} (h_{ef}: 有効埋め込み長)
- c) h: 基準母材厚 (h ≥ h_{min})
- d) コンクリートコーン状破壊による基準へりあき寸法は、有効埋込み長 hef と設計付着強度による影響を受けます。上表の簡易式は安全側にて検討されています。

鉄筋	ハンマードリル(HD)	ホロービット(HDB)	ブラシ HIT-RB
	d_0 [mm]		size [mm]
721212121212			
φ8	12 / 10 ^{a)}	12	12 / 10 ^{a)}
φ10	14 / 12 ^{a)}	14 / 12 ^{a)}	14 / 12 ^{a)}
φ12	16 / 14 ^{a)}	16 / 14 ^{a)}	16 / 14 ^{a)}
φ14	18	18	18
φ16	20	20	20
φ20	25	25	25
φ25	32	32	32
φ26	32	32	32
φ28	35	35	35
φ30	37	-	37
φ32	40	-	40

a) どちらの値を用いても問題ありません。

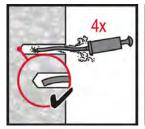

施工手順

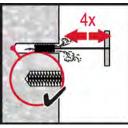
*施工工具の詳細については製品パッケージに記載の使用説明書をご覧ください。

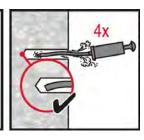


安全規制

適切で安全な取り扱いのために、事前に材料安全データシート (MSDS)をご確認ください。 HIT-HY 200 を取り扱う際には適した保護ゴーグルと保護手袋を着用してください。

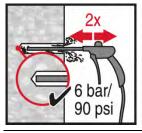



ハンマードリル穿孔 (HD)



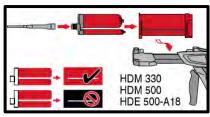
ヒルティホロービット穿孔 (HDB)

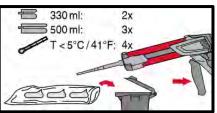
清掃不要

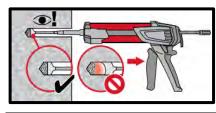


手動清掃 (MC)

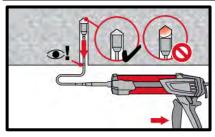
穿孔径が20mm以下および有効埋込み長 10d 以下の場合

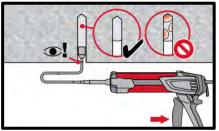


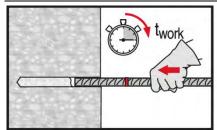


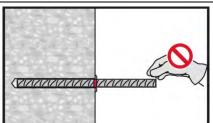

圧縮空気による清掃 (CAC)

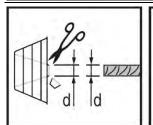
有効埋め込み長が 20d 以下の全ての穿 孔径に対応

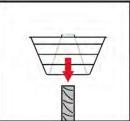


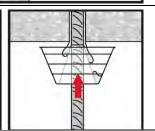

注入準備.

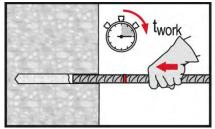


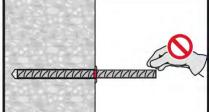

穿孔長 h_{ef} > 250mm の注入方法




上向きもしくは有効埋め込み長が 250mm を超える場合の注入方法




ゲル状時間が経過する前にアンカー筋を 挿入



上向き施工でもゲル状時間が経過する前 にアンカー筋を挿入

ゲル状時間が経過する前にアンカー筋を 挿入

使用適正 (長期特性)

ETAG ガイドライン 001 パート 5 および TR 023 に従って、次の条件でいくつかのクリープ試験が行われています:50℃の乾燥環境で90 日間。

これらの試験結果(長期安定性を備えた低変位、基準荷重を超える暴露後の破壊荷重)により、HIT- HY 200 で施工されたあと施工アンカーの優れた長期特性を示しています。

化学物質に対する耐性

10十70月にかりる間は	
化学物質	耐性
空気	+
酢酸 10%	+
アセトン	0
アンモニア 5%	+
ベンジルアルコール	-
塩素酸 10%	0
石灰塩素 10%	+
クエン酸 10%	+
コンクリート可塑剤	+
除氷塩(塩化カルシウム)	+
脱塩水	+
ディーゼル燃料	+
掘削ダスト懸濁液 pH 13,2	+
エタノール 96%	-
酢酸エチル	-
ギ酸 10%	+
型枠オイル	+

化学物質	耐性
ガソリン	+
グリコール	0
過酸化水素 10%	0
乳酸 10%	+
機械油	+
メチルエチルケトン	0
硝酸 10%	0
リン酸 10%	+
水酸化カリウム pH 13,2	+
海水	+
下水汚泥	+
炭酸ナトリウム 10%	+
次亜塩素酸ナトリウム 2%	+
硫酸 10%	+
硫酸 30%	+
トルエン	0
キシレン	0

- + 耐性あり
- o 最大 48 時間以内で耐性あり
- 耐性なし

電気伝導性

硬化状態の $H\ I\ T\ -\ H\ Y\ 2\ 0\ 0$ は導電性ではない。 その電気抵抗率は $15,5\cdot10^9\ \Omega\cdot cm$ (DIN IEC 93 $-\ 12.93$) 電気絶縁固定を実現するのに適しています(M: 鉄道用途、地下鉄)

HIT-ICE 注入式アンカー

注入システム

Hilti HIT-ICE 296 ml カートリッジ

アンカーボルト: HIT-V HIT-V-F HIT-V-R HIT-V-HCR ボルト (M8-M24)

アンカーボルト: HAS-(E) HAS-(E)-R HAS-(E)-HCR ボルト (M8-M24)

内ねじアンカースリーブ HIS-N HIS-R-N (M8-M20)

特徴

- ひび割れを想定しないまたはひび 割れを想定するコンクリート C 20/25~C 50/60 に適用
- 高耐力
- 乾燥及び湿潤コンクリートに適用
- 耐腐食 / 高耐腐食 a)
- 無臭性樹脂
- 低温施工可能

適用母材

コンクリート コンク

コンクリート a) (ひび割れを想定)

乾燥コンクリート

フリート 湿潤コンクリート

荷重形態

静的/準静的

(ひび割れを想定しない) **施工状況**

ハンマードリル 狭いへりあきと 穿孔 アンカーピッチ

埋込み長の 変化に対応

情報

PROFIS Anchor 設計ソフトウェア 対応

耐腐食

HCR 高耐腐食 ^{a)}

a) HIT-V ボルトのみ適用

認証 / 承認

種類	機関 / 研究所	No. / 発行年月日			
ヒルティ技術データ ^{a)}	Hilti	2017-11-28			

a) 本章における全てのデータはヒルティ技術データに基づいています。

基本荷重データ (単体アンカー対象)

本項の全ての数値は下記条件の場合に適用されます

- 正しく施工されていること(施工手順参照) へりあき、アンカーピッチの影響なし 下表斜字数値は鋼材破壊値

- 母材厚は表による
- 標準埋込み長の仕様は表による
- アンカーボルト仕様は表による コンクリート圧縮強度 C 20/25, fck,cube=25 N/mm²(JIS 規格 Fc≒21 N/mm² 相当)

基準有効埋込み長と最小母材厚

アンカーサイズ		MO	M10	M12	M16	Man	MOA
アンカーリィス		M8	M10	M12	M16	M20	M24
HIT-V							
標準埋込み長	[mm]	80	90	110	125	170	210
最小母材厚	[mm]	110	120	140	165	220	270
HIS-N							
標準埋込み長	[mm]	90	110	125	170	205	-
最小母材厚	[mm]	120	150	170	230	270	-

基準耐力

アンカーサイズ			M8	M10	M12	M16	M20	M24				
ひび割れを想定しないコンクリート												
引張 N _{Rk}	HIT-V 5.8	– [kN]	17,6	29,0	42,0	66,0	96,1	142,5				
	HIS-N 8.8	— [KIN] F	25,0	42,8	56,4	88,2	88,9	-				
44 / 座4 \ /	HIT-V 5.8	— [kN]	9,0	15,0	21,0	39,0	61,0	88,0				
せん断 V _{Rk}	HIS-N 8.8	— [KIN]	13,0	23,0	34,0	63,0	58,0	-				
ひび割れを想定す	するコンクリート											
引張 N _{Rk}	HIT-V 5.8	[kN]	-	-	20,7	25,1	32,0	-				
せん断 V _{Rk}	HIT-V 5.8	[kN]	-	-	21,0	39,0	61,0	-				

設計耐力

アンカーサイズ			M8	M10	M12	M16	M20	M24			
ひび割れを想定しないコンクリート											
引張 N _{Rd}	HIT-V 5.8	[kN]	11,7	16,5	24,2	36,7	53,4	79,2			
	HIS-N 8.8	— [KIN]	16,7	28,5	37,6	58,8	59,3	-			
44 / 座4 \ /	HIT-V 5.8	— [kN]	7,2	12,0	16,8	31,2	48,8	70,4			
せん断 V _{Rd}	HIS-N 8.8	[KIN]	10,4	18,4	27,2	50,4	46,4	-			
ひび割れを想定す	するコンクリート										
引張 N _{Rd}	HIT-V 5.8	[kN]	-	-	11,5	14,0	17,8	-			
せん断 V _{Rd}	HIT-V 5.8	[kN]	-	-	16,8	31,2	42,7	-			

許容安全荷重 a)

nuxine										
アンカーサイズ			M8	M10	M12	M16	M20	M24		
ひび割れを想定しないコンクリート										
引張 N _{Rec}	HIT-V 5.8	– [kN]	8,4	11,8	17,3	26,2	38,1	56,5		
	HIS-N 8.8	— [KIN] F	11,9	20,4	26,8	42,0	42,3	-		
++ / ΨC \ /	HIT-V 5.8	– [kN]	5,1	8,6	12,0	22,3	34,9	50,3		
せん断 V _{Rec}	HIS-N 8.8	- [KIN]	7,4	13,1	19,4	36,0	33,1	ı		
ひび割れを想定す	するコンクリート									
引張 N _{Rec}	HIT-V 5.8	[kN]	-	-	8,2	10,0	12,7	ı		
せん断 V _{Rec}	HIT-V 5.8	[kN]	-	-	12,0	22,3	30,5	-		

a) 荷重に対する部分安全係数は γ=1,2 として考慮されています。この 部分安全係数は荷重の種類によって異なり、国際基準から得ら れたものです。

材料

HIT-V / HAS ボルトの機械的特性

アンカーサイズ			M8	M10	M12	M16	M20	M24
	HIT-V 5.8 HAS-(E) 5.8		500	500	500	500	500	500
	HIT-V 8.8	_	800	800	800	800	800	800
-	HIT-V-R HAS-(E)R	[N/mm²]	700	700	700	700	700	700
	HIT-V-HCR HAS-(E)HCR		800	800	800	800	800	700
	HIT-V 5.8 HAS-(E) 5.8		400	400	400	400	400	400
	HIT-V 8.8	[N/mm²]	640	640	640	640	640	640
降伏点強度 f _{yk}	HIT-V-R HAS-(E)R		450	450	450	450	450	450
	HIT-V-HCR HAS-(E)HCR		600	600	600	600	600	400
応力断面積 A。	HIT-V	- [mm²]	36,6	58,0	84,3	157	245	353
ルレノ」町田慎 As	HAS-(E)	_ [!!!!!!=]	32,8	52,3	76,2	144,0	225,0	324,0
断面係数 W	HIT-V	- [mm³]	31,2	62,3	109,0	277,0	541,0	935,0
断山沿级 VV	HAS-(E)	_ [!!!!!!]	27,0	54,1	93,8	244,0	474,0	809,0

HIS-N の機械的特性

アンカーサイズ			M8	M10	M12	M16	M20
	HIS-N		490	490	460	460	460
۱ _{uk} <u>۱</u>	ボルト 8.8	- - [N/mm²]	800	800	800	800	800
	HIS-RN	_ [14/111111-]	700	700	700	700	700
	ボルト A4-70		700	700	700	700	700
	HIS-N		410	410	375	375	375
降伏点強度 f _{vk}	ボルト 8.8	- - [N/mm²]	640	640	640	640	640
P4八無法及 Tyk	HIS-RN	<u>- [14/111111-]</u>	350	350	350	350	350
	ボルト A4-70		450	450	450	450	450
応力断面積 As	HIS-(R)N	- [mm²]	51,5	108,0	169,1	256,1	237,6
	ボルト	[111111-]	36,6	58	84,3	157	245
断面係数 W	HIS-(R)N	- [mm³]	145	430	840	1595	1543
DIEDINGX VV	ボルト	[11111112]	31,2	62,3	109	277	541

HIT-V の材料品質

部材	材料
電気亜鉛めっき	
全ねじボルト, HIT-V 5.8 (F) HAS-(E) 5.8	強度区分 5.8; 伸び A5 > 8% 電気亜鉛めっき ≥ 5μm; (F) 溶融亜鉛めっき ≥ 45 μm
全ねじボルト, HIT-V 8.8 (F) HAS-(E) 8.8	強度区分 8.8; 伸び A5 > 12% 電気亜鉛めっき ≥ 5μm; (F) 溶融亜鉛めっき ≥ 45 μm
ワッシャー	電気亜鉛めっき ≥ 5 μm, 溶融亜鉛めっき ≥ 45 μm
ナット	ナットの強度区分は接続するボルトの強度区分と同等 電気亜鉛めっき ≥ 5μm, 溶融亜鉛めっき ≥ 45 μm
ステンレス鋼	
全ねじボルト, HIT-V-R HAS-(E)-R	強度区分 70 伸び A5 > 8% ステンレス鋼 1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362
ワッシャー	ステンレス鋼 1.4401, 1.4404, 1.4578, 1.4571, 1.4439, 1.4362 EN 10088- 1:2014
ナット	ステンレス鋼 1.4401, 1.4404, 1.4578, 1.4571, 1.4439, 1.4362 EN 10088- 1:2014
高耐食性合金鋼	
全ねじボルト, HIT-V-HCR HAS-(E)-HCR	強度区分 80 (M20 以下) ,強度区分 70 (M24) 伸び A5 > 8% 高耐食性合金鋼 1.4529; 1.4565;
ワッシャー	高耐食性合金鋼 1.4529, 1.4565 EN 10088-1:2014
ナット	高耐食性合金鋼 1.4529, 1.4565 EN 10088-1:2014

HIS-N の材料品質

1113-14 0ン43か	加貝	
部材		材料
	内ねじアンカー	炭素鋼 1.0781
HIS-N	_スリーブ	電気亜鉛めっき ≥ 5µm
H12-IV	ボルト 8.8	強度区分 8.8, 伸び A5 > 8%
	71071, 0.0	電気亜鉛めっき ≥ 5μm
	内ねじアンカー	ステンレス鋼 1.4401 , 1.4571
HIS-RN	_スリーブ	·
	ボルト A4-70	強度区分 70, 伸び A5 > 8%
		ステンレス鋼 1.4401, 1.4404, 1.4578, 1.4571, 1.4439, 1.4362

アンカー寸法

アンカーサイズ	M8	M10	M12	M16	M20	M24
HAS-(E), HAS-(E)-R, HAS-(E)-HCR	M8x80	M10x90	M12x110	M16x125	M20x170	M24x210
HIT-V, HIT-V-R, HIT-V-HCR	HIT-V (-R/-HCR) は埋込み長により設定					
HIS-(R)N	M8x90	M10x90	M12x110	M16x125	M20x170	-

施工条件

施工温度範囲

-23°C to +32°C

使用温度範囲

HIT-ICE 注入方式アンカーは以下の温度範囲にて適用されます。母材温度の上昇により、設計付着応力が低下する場合があります。

母材温度

温度範囲	母材温度	長期最大母材温度	最大短期母材温度		
温度範囲 I	-40 °C to + 40 °C	+ 24 °C	+ 40 °C		
温度範囲 II	-40 °C to + 54 °C	+ 43 °C	+ 54°C		

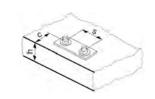
短期最大母材温度

一日程度の短いサイクルの気温の変化に伴って.母材温度が変化するときの最大母材温度を指します。

長期最大母材温度

長期間に亘る継続的な気温変化に伴って.母材温度が変化するときの最大母材温度を指します。

ゲル状時間, 硬化時間


母材温度	アンカーに荷重を掛けるまでに 必要な硬化時間 t _{cure}	ボルトを挿入してから調整できる までのゲル状時間 t _{work}		
32 °C	35 min	1 min		
21 °C	45 min	2,5 min		
16 °C	1 h	5 min		
4 °C	1,5 h	15 min		
-7 °C	6 h	1 h		
-18 °C	24 h	1,5 h		
-23 °C	36 h	1,5 h		

施工詳細

ルビュー・市十州山									
アンカーサイズ			M8	M10	M12	M16	M20	M24	
穿孔径(ビットの呼び径)	d_0	[mm]	10	12	14	18	24	28	
			60	60	70	80	90	96	
有効埋込み長, 穿孔長	h_{ef}	[mm]	\sim	\sim	~	\sim	\sim	\sim	
			160	200	240	320	400	480	
最小母材厚 a)	h_{\min}	[mm]		30 ≥ 100	mm	$h_{ef} + 2 d_0$			
取付物の下穴径	d_f	[mm]	9	12	14	18	22	26	
最小アンカーピッチ	S _{min}	[mm]	40	50	60	80	100	120	
最小へりあき	C _{min}	[mm]	40	45	45	50	55	60	
割裂破壊による	c	[mm]	2 c _{cr,sp}						
基準アンカーピッチ	S _{cr,sp}	[!!!!!]							
	C _{cr,sp}	[mm]	1,0 · h_{ef} for h / $h_{ef} \ge 2,0$			h/h _{ef}			
割裂破壊による			4,6 h _{ef} - 1,8 h for			2,0			
基準へりあき寸法 ^{b)}			2,0 > h / h _{ef} > 1,3			1,3		***************************************	
			2,26 h _{ef}	for h / h _{ef}	≤ 1,3	+	1,0·h _{ef} 2,26·h	C _{cr,sp}	
コンクリートコーン状破壊に よる基準アンカーピッチ	S _{cr,N}	[mm]	2 c _{cr,N}						
コンクリートコーン破壊に よる基準へりあき寸法 ^{b)}	C _{cr,N}	[mm]	1,5 h _{ef}						
締付けトルク c)	T_{max}	[Nm]	10	20	40	80	150	200	

基準アンカーピッチ(基準へりあき寸法)より狭いアンカーピッチ(へりあき寸法)の場合、設計荷重は低減して下さい。

- a) h: 母材厚(h ≥ hmin)
- b) コンクリートコーン状破壊による基準へりあき寸法は、有効埋込み長さ hef と設計付着強度による影響を受けます。上表の簡易式は 安全側にて検討されています。
- c) 施工時、アンカーに対して最小のアンカーピッチや最小のへりあき寸法においても割裂破壊を起こさないよう考慮された推奨締付けトルク値です。

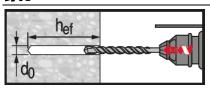
施工工具

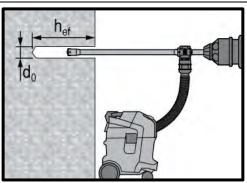
アンカーサイズ		M8	M10	M12	M16	M20	M24		
ロータリー	HIT-V	Т	E 2 – TE 3	0	TE 40 - TE 70				
ハンマードリル	HIS-N	TE 2 -	TE 30	Т	E 40 – TE 7	70	-		
その他の工具		エア	'ーコンプレ	ッサーまたに	はダストポン	プ(ブロワ	—)		
				ブラシ、ディ	ィスペンサー	-			

穿孔工具と孔内清掃ツール

HIT-V HAS	HIS-N	ハンマードリル (HD)	ブラシ HIT-RB
		d ₀ [mm]	サイズ [mm]
manana 🗐 m	EAGUANANAN .	TU	
M8	-	10	10
M10	-	12	12
M12	M8	14	14
M16	M10	18	18
-	M12	22	22
M20	-	24	24
M24	M16	28	28
-	M20	32	32

施工手順

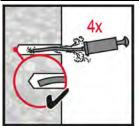

*施工の詳細については製品のパッケージに付属の取扱説明書を参照してください。

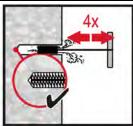

安全上の注意点

安全な施工のため使用前に材料安全データシート(MSDS)を確認してください。 保護メガネと保護手袋を着用してください。

穿孔

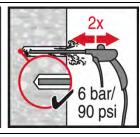
ハンマードリル穿孔 (HD)



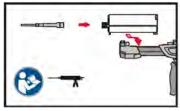

ヒルティホロードリルビット穿孔(HDB)

孔内清掃は不要。 乾燥および湿潤のコンクリートのみ。


孔内清掃

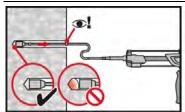


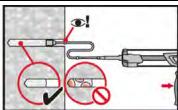
ハンマードリル穿孔: **手作業による清掃時 (MC)** 穿孔径 d₀ ≤ 16 mm と穿孔長 h₀ ≤ 10d

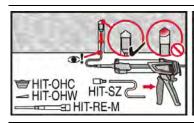


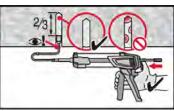
ハンマードリル穿孔: 圧縮空気による清掃時 (CAC) 全ての穿孔径 do と全ての穿孔長 ho

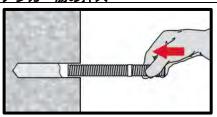
注入システム

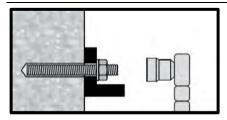



注入システムの準備

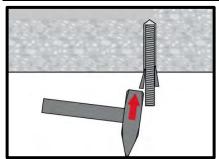


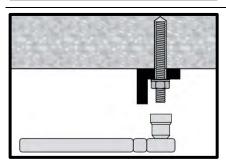

穿孔長 h_{ef} が 250mm 以下の場合の注入


穿孔長 h_{ef}が 250mm 以上の場合の注入


上向きの場合の注入

アンカー筋の挿入


ゲル状時間内にアンカー筋を挿入"twork"


アンカー筋に荷重を掛ける。

硬化時間 tcure が過ぎてから、荷重を掛けてください。

上向き施工の場合は

ゲル状時間内はクサビ等を用いて落下しないよう保持してください。

アンカー筋に荷重を掛ける。

硬化時間 tcureが過ぎてから、荷重を掛けてください。

HVU2 接着系カプセル方式アンカー

接着系力プセル方式アンカー

HVU2 フォイルカプセル

アンカーボルト: HAS HAS-R HAS-HCR (M8-M16) アンカーボルト: HAS-E HAS-E-R HAS-E-HCR (M8-M24) 内ねじアンカースリ ーブ: HIS-N

- **SAFEset**(**セーフセット**工法): ヒルティのホロードリルビットにより、穿孔と同時に孔内を自動清掃。
- ひび割れ想定あり/なしともに コンクリート C 20/25 から C 50/60 に適用(ハンマードリ ル穿孔とダイヤモンドコア穿 孔に対応)
- 厳しい現場環境でも素早く施 工可能
- ・乾燥・湿潤のコンクリート施工可能
- 高耐力

特徴

- 短い硬化時間

母材

コンクリート(ひび

割れを想定しない)

コンクリート (ひび割れを想 定する)

乾燥コンクリー ト

湿潤コンクリー ト

荷重状況

HIS-RN (M8-M20)

静的 / 準静的

その他

耐火

耐震 ETA-C1 C-2 (M16.20)

施工状況

ハンマードリル 穿孔

ダイヤモンドコ ア穿孔

ヒルティのセー フセット工法

狭いへりあきと アンカーピッチ

ETA

P CE 適合

Profis Anchor 設計 ソフトウェア

耐腐食

HCR 高耐腐食

認証/承認

種類	機関 / 研究所	No. /発行年月日
ETA 欧州技術認証 a)	DIBt. Berlin	ETA-16/0515 / 2017-12-14
ETA 欧州技術認証 a)	DIBt. Berlin	ETA-18/0184 / 2018-05-14
ETA 欧州技術認証 a)	DIBt. Berlin	ETA-18/0185 / 2018-05-14
耐火試験評価	ING.Thiele. Pirmasens	21735 / 2017-08-01

a) 本章におけるすべてのデータは 2017 年 12 月 14 日発行の ETA-16/0515、 2018 年 5 月 14 日発行の ETA-18/0184、 2018 年 5 月 14 日発行の ETA 18/0185 に基づいています。

静的または準静的耐力 (単体アンカーでの留付け)

本項の全ての数値は下記条件の場合に適用されます。

- 正しく施工されていること(施工手順参照)
- へりあき、アンカーピッチの影響なし
- 下表斜字数値 は鋼材破壊値
- 最小母材厚
- コンクリート圧縮強度(C 20/25): f_{ck.cube} = 25 N/mm² (JIS 規格のコンクリート圧縮強度 F_c≒21 N/mm² 相当)

基準有効埋め込み長さと最小母材厚

アンカーサイズ			M8	M10	M12	M16	M20	M24	M27	M30
HAS										
基準有効埋込み長さ	h _{ef}	[mm]	80	90	110	125	170	210	240	270
基準最小母材厚	h _{min}	[mm]	110	120	140	160	220	270	300	340
HIS-N										
基準有効埋込み長さ	h_{ef}	[mm]	90	110	125	170	205	-	-	-
基準最小母材厚	h _{min}	[mm]	120	150	170	230	270	-	-	-

ハンマードリル、ホロードリルビットとハンマードリル穿孔による施工 1):

基準耐力

アンカーサイン	ズ		M8	M10	M12	M16	M20	M24	M27	M30
ひび割れを想象	定しないコンクリ	ート								
	HAS-(E) 5.8		19.8	31.6	45.6	86.3	117.8	168.2	206.6	250.9
	HAS-(E) 8.8		25.2	40.2	58.1	102.0	161.8	222.2	271.5	323.9
引張 N _{Ru,m}	HAS-(E-)R	[kN]	22.1	35.2	50.8	96.1	149.5	213.6	113.8	138.3
וא אנוכי I N Ru,m	HAS-(E-)HCR	[KIN]	25.2	40.2	58.1	102.0	161.8	213.6	113.8	138.3
	HIS-N 8.8		26.3	48.3	70.4	131.3	121.8	-	-	-
	HIS-RN 70		27.3	43.1	62.0	115.5	174.3	-	-	-
	HAS-(E) 5.8		10.0	15.9	22.8	43.2	58.9	84.1	113.8	138.3
	HAS-(E) 8.8		14.0	22.2	32.0	60.6	94.2	134.6	182.2	221.2
せん断 V _{Ru,m}	HAS-(E-)R	[LN]	12.2	19.4	28.0	53.0	82.4	117.8	216.9	263.4
C/OM/I VRu,m	HAS-(E-)HCR	[kN]	14.0	22.2	32.0	60.6	94.2	117.8	204.5	244.0
	HIS-N 8.8		13.7	24.2	35.7	66.2	60.9	ı	-	-
	HIS-RN 70		13.7	21.0	31.5	57.8	87.2	-	-	-
ひび割れを想象	定するコンクリー	 								
	HAS-(E) 5.8		13.3	31.6	45.6	70.9	113.3	155.5	-	-
	HAS-(E) 8.8		13.3	31.9	46.8	70.9	113.3	155.5	190.0	226.8
引張 N _{Ru,m}	HAS-(E-)R	[kN]	13.3	31.9	46.8	70.9	113.3	155.5	113.8	138.3
או אנוכי ואRu,m	HAS-(E-)HCR	[KIN]	13.3	31.9	46.8	66.8	113.3	155.5	-	-
	HIS-N 8.8		26.3	48.3	66.8	113.3	121.8	•	-	-
	HIS-RN 70		27.3	43.1	62.0	113.3	150.0	•	-	-
	HAS-(E) 5.8		10.0	15.9	22.8	43.2	58.9	84.1	-	-
	HAS-(E) 8.8		14.0	22.2	32.0	60.6	94.2	134.6	182.2	221.2
せん断 V _{Ru,m}	HAS-(E-)R	[LNI]	12.2	19.4	28.0	53.0	82.4	117.8	216.9	263.4
	HAS-(E-)HCR	[kN] -	14.0	22.2	32.0	60.6	94.2	117.8	-	-
	HIS-N 8.8		13.7	24.2	35.7	66.2	60.9	ı	-	-
	HIS-RN 70		13.7	21.0	31.5	57.8	87.2	-	-	-

¹⁾ ホロードリルビットは M12 から M20 まで対応

設計耐力

アンカーサイ	ズ		M8	M10	M12	M16	M20	M24	M27	M30
ひび割れを想	定しないコンクリ	- ト								
	HAS-(E) 5.8		12.6	20.1	28.9	45.8	72.7	99.8	75.8	92.1
	HAS-(E) 8.8		16.1	28.1	37.8	45.8	72.7	99.8	121.9	145.5
引張 N _{Rd}	HAS-(E-)R	[kN]	13.8	22.0	31.7	45.8	72.7	99.8	45.5	55.3
או אנוכ INRd	HAS-(E-)HCR	[KIN]	16.1	28.0	37.8	45.8	72.7	99.8	45.5	55.3
	HIS-N 8.8		16.7	30.7	44.7	72.7	77.3	-	ı	1
	HIS-RN 70		13.9	21.9	31.6	58.8	69.2	-	•	ı
	HAS-(E) 5.8		7.6	12.1	17.4	32.9	44.9	64.1	45.5	55.3
せん断 V _{Rd}	HAS-(E) 8.8		10.6	16.9	24.4	46.2	71.8	102.6	138.8	168.6
	HAS-(E-)R	[LAJ]	8.3	13.2	19.1	36.1	50.3	71.9	54.2	65.8
	HAS-(E-)HCR	[kN]	10.6	16.9	24.4	46.2	71.8	64.1	54.2	65.8
	HIS-N 8.8		10.4	18.4	27.2	50.4	46.4	-	ı	ı
	HIS-RN 70		8.3	12.8	19.2	35.3	41.5	-	-	-
ひび割れを想	定するコンクリー	· ト								
	HAS-(E) 5.8		6.7	16.0	23.5	32.1	50.9	69.9	-	-
	HAS-(E) 8.8		6.7	16.0	23.5	32.1	50.9	69.9	85.4	101.8
引張 N _{Rd}	HAS-(E-)R	[kN]	6.7	16.0	23.5	32.1	50.9	69.9	45.5	55.3
או אנוכ INRd	HAS-(E-)HCR	[KIN]	6.7	16.0	23.5	32.1	50.9	69.9	ı	ı
	HIS-N 8.8		15.3	24.7	32.1	50.9	67.4	-	ı	ı
	HIS-RN 70		13.9	21.9	31.6	50.9	67.4	-	ı	ı
	HAS-(E) 5.8		7.6	12.1	17.4	32.9	44.9	64.1	ı	ı
	HAS-(E) 8.8		10.6	16.9	24.4	46.2	71.8	102.6	138.8	168.6
++ 4 米丘 \ /	HAS-(E-)R	[LAJ]	8.3	13.2	19.1	36.1	50.3	71.9	54.2	65.8
せん断 V _{Rd}	HAS-(E-)HCR	[kN]	10.6	16.9	24.4	46.2	71.8	64.1	-	-
	HIS-N 8.8		10.4	18.4	27.2	50.4	46.4	-	-	-
	HIS-RN 70		8.3	12.8	19.2	35.3	41.5	-	-	-

¹⁾ ホロードリルビットは M12 から M20 まで対応

許容安全荷重 2)

TH女工问生 /										
アンカーサイ	ズ		M8	M10	M12	M16	M20	M24	M27	M30
ひび割れを想	定しないコンクリ	ノート								
	HAS-(E) 5.8		9.0	14.3	20.7	32.7	51.9	71.3	87.1	103.9
	HAS-(E) 8.8		11.5	20.0	27.0	32.7	51.9	71.3	87.1	103.9
引張 N _{Rec}	HAS-(E-)R	[kN]	9.9	15.7	22.7	32.7	51.9	71.3	54.2	65.8
או אנור.	HAS-(E-)HCR	נגואן	11.5	20.0	27.0	32.7	51.9	71.3	87.1	103.9
	HIS-N 8.8		11.9	21.9	31.9	51.9	55.2	-	-	-
	HIS-RN 70		9.9	15.7	22.5	42.0	49.4	-	-	-
	HAS-(E) 5.8	•	5.4	8.6	12.4	23.5	32.1	45.8	194.8	232.4
++	HAS-(E) 8.8	-	7.6	12.1	17.4	33.0	51.3	73.3	99.1	120.4
	HAS-(E-)R	[kN]	5.9	9.4	13.6	25.8	35.9	51.4	32.5	39.5
	HAS-(E-)HCR		7.6	12.1	17.4	33.0	51.3	45.8	194.8	232.4
	HIS-N 8.8		7.4	13.1	19.4	36.0	33.1	-	-	-
	HIS-RN 70		6.0	9.2	13.7	25.2	29.6	-	-	-
ひび割れを想	定するコンクリー	-ト								
	HAS-(E) 5.8		4.8	11.4	16.8	22.9	36.3	49.9	-	-
	HAS-(E) 8.8		4.8	11.4	16.8	22.9	36.3	49.9	61.0	72.7
引張 N _{Rec}	HAS-(E-)R	[kN]	4.8	11.4	16.8	22.9	36.3	49.9	54.2	65.8
או אונור IAKec	HAS-(E-)HCR	נגואן	4.8	11.4	16.8	22.9	36.3	49.9	-	-
	HIS-N 8.8		10.9	17.6	22.9	36.3	48.1	-	-	-
	HIS-RN 70		9.9	15.7	22.5	36.3	48.1	-	-	-
	HAS-(E) 5.8	<u>-</u> .	5.4	8.6	12.4	23.5	32.1	45.8	-	-
	HAS-(E) 8.8		7.6	12.1	17.4	33.0	51.3	73.3	99.1	120.4
 	HAS-(E-)R	[kN]	5.9	9.4	13.6	25.8	35.9	51.4	32.5	39.5
せん断 V _{Rec}	HAS-(E-)HCR		7.6	12.1	17.4	33.0	51.3	45.8	-	-
	HIS-N 8.8		7.4	13.1	19.4	36.0	33.1	-	-	-
	HIS-RN 70		6.0	9.2	13.7	25.2	29.6	-	-	-

¹⁾ ホロードリルビットは M12 から M20 まで対応

²⁾ 部分安全係数は $\gamma=1.4$ です.この部分安全係数は荷重の種類によって異なるため、各国の基準を採用してください。

ダイヤモンドコア穿孔:

基準耐力

アンカーサイン	ズ		M8	M10	M12	M16	M20	M24	M27	M30
ひび割れを想	定しないコンクリ	ノート								
	HAS-(E) 5.8		-	31.6	45.6	86.3	117.8	168.2	-	-
	HAS-(E) 8.8		-	40.2	58.1	102.0	161.8	222.2	271.5	323.9
引張 N _{Ru,m}	HAS-(E-)R	[kN]	•	35.2	50.8	96.1	149.5	213.6	113.8	138.3
ו אנוכי NRu,m	HAS-(E-)HCR	[KIN]	•	40.2	58.1	102.0	161.8	213.6	•	-
	HIS-N 8.8		26.3	48.3	70.4	131.3	121.8	•	ı	-
	HIS-RN 70		27.3	43.1	62.0	115.5	174.3	•	ı	-
	HAS-(E) 5.8		•	15.9	22.8	43.2	58.9	84.1	-	-
	HAS-(E) 8.8		-	22.2	32.0	60.6	94.2	134.6	182.2	221.2
++ 4	HAS-(E-)R	[LAI]	1	19.4	28.0	53.0	82.4	117.8	216.9	263.4
せん断 V _{Ru,m}	HAS-(E-)HCR	[kN]	•	22.2	32.0	60.6	94.2	117.8	ı	-
	HIS-N 8.8		13.7	24.2	35.7	66.2	60.9	-	-	-
	HIS-RN 70		13.7	21.0	31.5	<i>57.8</i>	87.2	-	-	-
ひび割れを想	定するコンクリー	-ト								
	HAS-(E) 5.8		-	26.3	38.5	58.4	99.3	147.1	-	-
	HAS-(E) 8.8		-	26.3	38.5	58.4	99.3	147.1	189.2	226.8
引張 N _{Ru,m}	HAS-(E-)R	[kN]	-	26.3	38.5	58.4	99.3	147.1	113.8	138.3
או אונוני NRu,m	HAS-(E-)HCR	[KIN]	-	26.3	38.5	58.4	99.3	147.1	-	-
	HIS-N 8.8		21.1	34.1	48.1	81.0	106.2	-	-	-
	HIS-RN 70		21.1	34.1	48.1	81.0	106.2	-	-	-
	HAS-(E) 5.8		•	15.9	22.8	43.2	58.9	84.1	ı	-
	HAS-(E) 8.8		•	22.2	32.0	60.6	94.2	134.6	182.2	221.2
せん断 V _{Ru,m} HAS-(I HAS-(I HIS-N	HAS-(E-)R	[kN]	•	19.4	28.0	53.0	82.4	117.8	216.9	263.4
	HAS-(E-)HCR		-	22.2	32.0	60.6	94.2	117.8	-	-
	HIS-N 8.8		13.7	24.2	35.7	66.2	60.9	-	-	-
	HIS-RN 70		13.7	21.0	31.5	57.8	87.2	-	-	-

設計耐力

設計耐力										
アンカーサイ	ズ		M8	M10	M12	M16	M20	M24	M27	M30
ひび割れを想	定しないコンクリ	ート								
	HAS-(E) 5.8		-	20.1	28.9	45.8	72.7	99.8	-	-
	HAS-(E) 8.8		-	26.4	37.8	45.8	72.7	99.8	121.9	145.5
引張 N _{Rd}	HAS-(E-)R	[kN]	-	22.0	31.7	45.8	72.7	99.8	45.5	55.3
או אנוכי	HAS-(E-)HCR	[KIN]	-	26.4	37.8	45.8	72.7	99.8	-	-
	HIS-N 8.8		16.7	30.7	44.7	72.7	77.3	-	-	-
	HIS-RN 70		13.9	21.9	31.6	58.8	69.2	-	-	-
	HAS-(E) 5.8		-	12.1	17.4	32.9	44.9	64.1	-	-
	HAS-(E) 8.8		-	16.9	24.4	46.2	71.8	102.6	138.8	168.6
せん断 V _{Rd}	HAS-(E-)R	[kN]	-	13.2	19.1	36.1	50.3	71.9	54.2	65.8
C/OE/I VRd	HAS-(E-)HCR		-	16.9	24.4	46.2	71.8	64.1	-	-
	HIS-N 8.8		10.4	18.4	27.2	50.4	46.4	-	-	-
	HIS-RN 70		8.3	12.8	19.2	35.3	41.5	-	-	-
ひび割れを想	定するコンクリー	· ト								
	HAS-(E) 5.8		-	13.2	19.4	29.3	49.8	69.9	-	-
	HAS-(E) 8.8		-	13.2	19.4	29.3	49.8	69.9	85.4	101.8
引張 N _{Rd}	HAS-(E-)R	[kN]	-	13.2	19.4	29.3	49.8	69.9	45.5	55.3
ו אונוני	HAS-(E-)HCR	[KIN]	-	13.2	19.4	29.3	49.8	69.9	-	-
	HIS-N 8.8		10.6	17.1	24.2	40.7	53.3	-	-	-
	HIS-RN 70		10.6	17.1	24.2	40.7	53.3	-	-	-
	HAS-(E) 5.8		-	12.1	17.4	32.9	44.9	64.1	-	-
	HAS-(E) 8.8		-	16.9	24.4	46.2	71.8	102.6	138.8	168.6
 	HAS-(E-)R	[kNl]	-	13.2	19.1	36.1	50.3	71.9	54.2	65.8
せん断 V _{Rd}	HAS-(E-)HCR	[kN]	-	16.9	24.4	46.2	71.8	64.1	-	-
	HIS-N 8.8		10.4	18.4	27.2	50.4	46.4	-	-	-
	HIS-RN 70		8.3	12.8	19.2	35.3	41.5	-	-	-

許容安全荷重 a)

アンカーサイ	ズ		M8	M10	M12	M16	M20	M24	M27	M30
ひび割れを想	定しないコンクリ	ート								
	HAS-(E) 5.8		-	14.3	20.7	32.7	51.9	71.3	-	-
	HAS-(E) 8.8		-	18.8	27.0	32.7	51.9	71.3	87.1	103.9
引張 N _{Rec}	HAS-(E-)R	[kN]	-	15.7	22.7	32.7	51.9	71.3	54.2	65.8
ואו אונוני	HAS-(E-)HCR	[KIN]	-	18.8	27.0	32.7	51.9	71.3	-	-
	HIS-N 8.8		11.9	21.9	31.9	51.9	55.2	-	-	-
	HIS-RN 70		9.9	15.7	22.5	42.0	49.4	-	-	-
	HAS-(E) 5.8		-	8.6	12.4	23.5	32.1	45.8	-	-
	HAS-(E) 8.8		-	12.1	17.4	33.0	51.3	73.3	99.1	120.4
せん断 V _{Rec}	HAS-(E-)R	[kN]	-	9.4	13.6	25.8	35.9	51.4	32.5	39.5
C /Ot/I V Rec	HAS-(E-)HCR		-	12.1	17.4	33.0	51.3	45.8	-	-
	HIS-N 8.8		7.4	13.1	19.4	36.0	33.1	-	-	-
	HIS-RN 70		6.0	9.2	13.7	25.2	29.6	-	-	-
ひび割れを想	定するコンクリー	· ト								
	HAS-(E) 5.8		-	9.4	13.8	20.9	35.6	49.9	-	-
	HAS-(E) 8.8		-	9.4	13.8	20.9	35.6	49.9	61.0	72.7
引張 N _{Rec}	HAS-(E-)R	[kN]	-	9.4	13.8	20.9	35.6	49.9	54.2	65.8
ואו אונוני	HAS-(E-)HCR	[KIN]	-	9.4	13.8	20.9	35.6	49.9	-	-
	HIS-N 8.8		7.6	12.2	19.3	29.1	38.1	-	-	-
	HIS-RN 70		7.6	12.2	17.3	29.1	38.1	-	-	-
	HAS-(E) 5.8		•	8.6	12.4	23.5	32.1	45.8	•	-
	HAS-(E) 8.8		•	12.1	17.4	33.0	51.3	73.3	99.1	120.4
い	HAS-(E-)R	[kN]	-	9.4	13.6	25.8	35.9	51.4	32.5	39.5
せん断 V _{Rec}	HAS-(E-)HCR		-	12.1	17.4	33.0	51.3	45.8	•	-
	HIS-N 8.8		7.4	13.1	19.4	36.0	33.1	-	-	-
	HIS-RN 70		6.0	9.2	13.7	25.2	29.6	-	-	-

a) 部分安全係数は γ = 1.4 です. この部分安全係数は荷重の種類によって異なるため.各国の基準を採用してください.

材料

HAS の機械的特性

アンカーサイ	ズ		M8	M10	M12	M16	M20	M24	M27	M30
	HAS-(E) 5.8		570	570	570	570	500	500	500	500
引張強度 fuk	HAS-(E) 8.8	- [N/mm²]	800	800	800	800	800	800	800	800
プロ弦迷凌 Tuk	HAS-(E-)R	- [۱۹/۱۱۱۱۱-]	700	700	700	700	700	700	500	500
	HAS-(E-)HCR		800	800	800	800	800	700	700	700
	HAS-(E) 5.8	- - [N/mm²]	400	400	400	400	400	400	400	400
降伏点強度	HAS-(E) 8.8		640	640	640	640	640	640	640	640
fyk	HAS-(E-)R		450	450	450	450	450	450	210	210
	HAS-(E-)HCR	-	640	640	640	640	640	400	400	400
応力断面積 As	HAS	[mm²]	33.2	52.3	76.2	144.0	225.0	324.0	427.0	519.0
断面係数 W	HAS	[mm³]	27.0	54.1	93.8	244.0	474.0	809.0	1274.0	1706.0

HIS-N の機械的特性

アンカーサイ	ズ		M8	M10	M12	M16	M20
	HIS-N		490	490	460	460	460
 引張強度 f _{uk}	Screw 8.8	 [N/mm²]	800	800	800	800	800
יוו אלאבלאניוע iuk	HIS-RN	_ [۱۹/۱۱۱۱۱]	700	700	700	700	700
	Screw 70		700	700	700	700	700
	HIS-N		410	410	375	375	375
降伏点強度	Screw 8.8	 [N/mm²]	640	640	640	640	640
f _{yk}	HIS-RN		350	350	350	350	350
•	Screw 70		450	450	450	450	450
応力断面積	HIS-(R)N		51.5	108.0	169.1	256.1	237.6
As	Screw	[mm²]	36.6	58.0	84.3	157.0	245.0
凼 山北秋 🗤 🕒	HIS-(R)N	— [mm³]	145	430	840	1595	1543
	Screw	[111111]	31.2	62.3	109.0	277.0	541.0

HAS の材質

部材	材質					
HAS HAS-E	強度区分 5.8 or 8.8; 破断伸度 (l₀=5d) > 8% 電気亜鉛めっき (≥5 μm); (F) 溶融亜鉛めっき ≥45 μm					
HAS-R HAS-E-R	M24 以下:強度区分 70; 破断伸度 (l₀=5d) > 8% ステンレス鋼 1.4401,1.4404, 1.4578, 1.4571, 1.4438, 1.43362 EN 10088-1:2014					
HAS-HCR HAS-E-HCR	破断伸度(l₀=5d) > 8% 高耐食性合金 1.4529. 1.1.4565 EN 10088-1:2014					
	電気亜鉛めっき (≥5 µm); (F) 溶融亜鉛めっき ≥45 µm					
ワッシャー	ステンレス鋼 1.4401, 1.4404, 1.4578, 1.4571, 1.4439, 1.4362 EN 10088-1:2014					
	高耐食性合金 1.4529. 1.1.4565 EN 10088-1:2014					
ナット	強度区分はボルトの強度区分と同等 電気亜鉛めっき (≥5 µm); 溶融亜鉛めっき ≥45 µm 強度区分はボルトの強度区分と同等 ステンレス鋼 1.4401, 1.4404, 1.4578, 1.4571, 1.4439, 1.4362 EN 10088-1:2014					
	強度区分はボルトの強度区分と同等 高耐食性合金 1.4529, 1.1.4565 EN 10088-1:2014					

HIS-N の材質

部材		材質
	内ねじアンカースリーブ	炭素鋼 1.0718; 電気亜鉛めっき ≥ 5 μm
HIS-N	Screw 8.8	強度区分 8.8、 電気亜鉛めっき≥ 5 µm
	内ねじアンカースリーブ	ステンレス鋼 1.4401.1.4571
HIS-RN	Screw 70	強度区分 70、 ステンレス鋼 1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362

施工条件

施工温度範囲

-10°C to +40°C

使用温度範囲

HVU2接着系カプセル方式アンカーは以下の温度範囲にて適用されます。母材温度の上昇により、設計付着応力が低下する場合がございます。

温度範囲	母材温度	長期最大母材温度	最大短期母材温度
温度範囲 I	-40 °C to +40 °C	+24 °C	+40 °C
温度範囲Ⅱ	-40 °C to +80 °C	+50 °C	+80 °C
温度範囲Ⅲ	-40 °C to +120 °C	+72 °C	+120 °C

短期最大母材温度

一日程度の短いサイクルの気温の変化に伴って.母材温度が変化するときの最大母材温度を指します。

長期最大母材温度

長期間にわたる継続的な気温変化に伴って.母材温度が変化するときの最大母材温度を指します。

通常状態での硬化時間

母材温度	硬化時間 tcure
-10 °C ~ -6 °C ¹⁾	5 時間 ¹⁾
-5 °C ~ -1 °C ¹⁾	3 時間 ¹⁾
0 °C ~ 4 °C	40 分
5 °C ~ 9 °C	20 分
10 °C ~ 19 °C	10 分
20 °C ~ 40 °C	5分

¹⁾ HAS の M24、M27、M30 および HIS の M20 は 0 °C 以上の環境でのみご利用いただけます。

HAS の施工条件

アンカーサイズ			M8	M10	M12	M16	M20	M24	M27	M30
HVU2 フォイルカプセル			8x80	10x90	12x110	16x125	20x170	24x210	27x240	30x270
アンカー筋径	$d_1 \!\!=\! d_{nom}$	[mm]	8	10	12	16	20	24	27	30
穿孔径(ビットの呼び径)	d_0	[mm]	10	12	14	18	22	28	30	35
有効埋込み長さ/穿孔深さ	h _{ef} =h ₀	[mm]	80	90	110	125	170	210	240	270
取り付け物の下穴径	df	[mm]	9	12	14	18	22	26	30	33
最小母材厚	h _{min}	[mm]	110	120	140	160	220	270	300	340
最大締め付けトルク®	T _{max}	[Nm]	10	20	40	80	150	200	270	300
最小アンカーピッチ	S _{min}	[mm]	40	50	60	75	90	115	120	140
最小へりあき寸法	C _{min}	[mm]	40	45	45	50	55	60	75	80
割裂破壊による 基準アンカーピッチ	Scr.sp		2 C _{cr.sp}							
割裂破壊による			1.0⋅h _{ef}		for	h / h _{ef} ≥ 2.	.0	h/h _{ef} †		
基準へりあき寸法 b)	C _{cr.sp}	[mm]	4.6 h _{ef} -1.	.8 h	for :	2.0 > h/h _e	_f > 1.3	1,3		
24 (90C 1/A			2.26 h _{ef}		for	h / h _{ef} ≤ 1.	.3	1,0	h _{ef} 2.26 h _{ef}	C _{cr,sp}
コンクリートコーン状破壊 による基準アンカーピッチ	S _{cr.N}	[mm]	2 C _{cr.N}			3 h _{ef}				
コンクリートコーン状破壊 による基準へリあき寸法 ⁽⁾	Ccr.N	[mm]	1.5 h _{ef}							

基準アンカーピッチ(基準へりあき寸法)より狭いアンカーピッチ(へりあき寸法)の場合、設計荷重は低減して下さい。

- a) 施工時、アンカーに対して最小のアンカーピッチや最小のへりあき寸法においても割裂破壊を起こさないよう考慮された最大の推奨締付けトルク値です。
- b) h: 母材厚 (h ≥ h_{min})
- c) コンクリートコーン状破壊による基準へりあき寸法は、有効埋め込み長さと設計付着強度による影響を 受けます。上表の簡易式は安全側にて検討されています。

HIS-(R)N の施工条件

アンカーサイズ			M8	M10	M12	M16	M20
HVU2 フォイルカプセル		10x90	12x110	16x125	20x170	24x210	
スリーブ径	d ₁ =d _{nom}	[mm]	12.5	16.5	20.5	25.4	27.8
穿孔径 (ビットの呼び径)	d_0	[mm]	14	18	22	28	32
有効埋込み長さ/穿孔深さ	h _{ef} =h ₀	[mm]	90	110	125	170	205
取り付け物の下穴径	d _f	[mm]	9	12	14	18	22
最小母材厚	h _{min}	[mm]	120	150	170	230	270
最大締め付けトルク ^{a)}	T _{max}	[Nm]	10	20	40	80	150
有効はめあい長さ 最小~ 最大	h _s		8-20	10-25	12-30	16-40	20-50
最小アンカーピッチ	S _{min}	[mm]	60	75	90	115	130
最小へりあき寸法	C _{min}	[mm]	40	45	55	65	90
割裂破壊による基準アンカーピッチ	S _{cr.sp}		2 Ccr.sp				
			1.0·h _{ef}	for h	/ h _{ef} ≥ 2.0	2,0	
割裂破壊による基準へりあ	C _{cr.sp}	[mm]	4.6 h _{ef} -1.8 h	for 2.	0 > h/h _{ef} > 1.3	1,3	
き寸法 ^{b)}	Ccr.sp [IIIII]		2.26 h _{ef}	for h / h _{ef} ≤ 1.3		1,0	h _{ef} 2,26·h _{ef} c _{cr,sp}
コンクリートコーン状破壊 による基準アンカーピッチ	S _{cr.N}	[mm]	2 C _{cr.N}			•	1.5 h _{ef}
コンクリートコーン状破壊 による基準ヘリあき寸法 ^の	C _{cr.N}	[mm]	1.5 h _{ef}				

基準アンカーピッチ(基準へりあき寸法)より狭いアンカーピッチ(へりあき寸法)の場合、設計荷重は低減して下さい

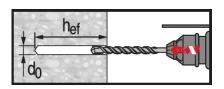
- a) 施工時、アンカーに対して最小のアンカーピッチや最小のへりあき寸法においても割裂破壊を起こさないよう考慮された最大の推奨締付けトルク値です。
- b) h: 母材厚 (h ≥ h_{min})
- c) コンクリートコーン状破壊による基準へりあき寸法は、有効埋め込み長さと設計付着強度による影響を 受けます。上表の簡易式は安全側にて検討されています。

標準施工工具

アンカーサイズ		M8	M10	M12	M16	M20	M24	M27	M30
ロータリーハンマードリル	V	TE 1- TI	E 30	TE 1- TE 60	TE 50- TE 60	TE 50-1	ΓE 80		
HAS		SF (H) -							
ドリルドライバー	HIS-N	-							
他の工具	エアーコンプレッサー. ダストポンプ. ヒルティホロービット								
	ブラシ								

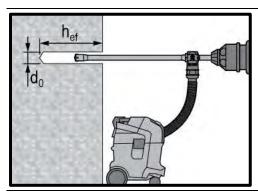
清掃と打設ツールの組み合わせ

HAS	HIS-N	ハンマードリル	ホロードリルビッ ト	ダイヤモンドコア	ブラシ HIT-RB
			d₀ [mm]		size [mm]
<u>шиништ</u> []т	Danaonanana	TU		€ >	-
M8	-	10	-	-	-
M10	-	12	-	12	12
M12	M8	14	14	14	14
M16	M10	18	18	18	18
M20	M12	22	22	22	22
M24	M16	28	28	28	28
M27	-	30	-	30	30
-	M20	32	32	32	32
M30	-	35	35	35	35



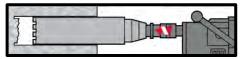
施工手順

安全面の注意点 安全な施工のために、安全データシートを必ずご一読ください。 保護めがねとグローブを着用してください。


穿孔

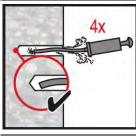
a.ハンマードリル穿孔

乾燥または湿潤のコンクリートおよび孔が冠水状態(海水は除く)


適切なサイズのドリルビットを用いて、適切なハンマードリルの回転・打撃モード に して指定された深さを穿孔する。

b.ヒルティホロードリルビット穿孔

乾燥および湿潤のコンクリートのみ

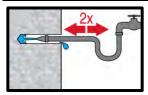

適切なサイズのヒルティ TE-CD または TE-Y ホロードリルビットを用いて、ヒルティ バキュームクリーナーに接続する。適切なハンマードリルの回転・打撃モードにして指定された深さを穿孔する。 この穿孔方法は、自動的に孔内清掃する仕組みで、穿孔中の切粉を排出する。この手順で穿孔した場合、ポンプやブラシによる清掃無しで、アンカー筋の挿入・打設に進む。

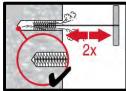
c.ダイヤモンドコア穿孔(乾燥および湿潤のコンクリートのみ).

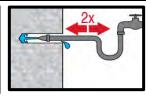
ダイヤモンドコアドリルおよび対応するコアビットを利用すれば、ダイヤモンドコ ア穿孔も可能。

孔内清掃

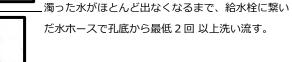
a.ハンマードリル穿孔の際の手作業による清掃時

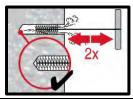

穿孔径 d0 \leq 18 mm と穿孔深さ h0 \leq 10·d.についてはダストポンプ等で手作業で孔内の切粉を除去することも可能。



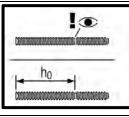

b.ハンマードリル穿孔の際の圧縮空気による清掃時

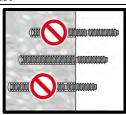
切粉がほとんど出なくなるまでオイルフリー式コンプレッサー(最低 6bar)で穿孔深さ以上のノズルを孔底から最低 2 回以上吹き飛ばす。

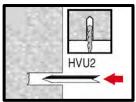




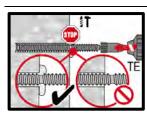
c.冠水したハンマードリル穿孔およびダイヤモンド コア穿孔時



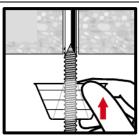




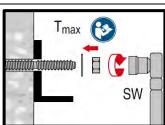
アンカー筋の挿入・打設



穿孔した穴の深さ、ボルトの埋込み長さを確認する。



凸型の先端が孔底へ向くようにカプセルを挿入



回転(ドリルドライバー)、もしくは回転打撃(ハンマードリル)で撹拌し、ボルトを打設。

過剰攪拌が起こらないよう注意すること

上向き施工時は樹脂が落ちないようにドリップガードを使用することを推奨.

硬化時間が経過した後、取付物を留め付ける。

(最大締め付けトルク Tmax 以下で締め付けること)

HIT-1 接着系注入方式アンカー

アンカーシステム

特長

- 2液混合タイプ
- 短い養生時間
- 天井面留付け対応
- 幅広い用途で容易な施工
- 簡単な使用、クリーン作業
- 小さいへりあきとアンカーピッチ対応
- 常に適切な調合が可能

アンカーボルト: HIT-V(F) HIT-V-R HIT-V-HCR (M8-M16)

母材

ひび割れを想定しない

乾燥した

コンクリート

荷重条件

静的/準静的

コンクリート **施工条件**

多様な 埋込み長

小さいへりあき/ アンカーピッチ

その他

欧州技術認証 ETA

CE 適合製品

認証 / 証明書

種類	機関 / 研究所	No. / 発行年月日
ETA 欧州技術認証 ^{a)}	TTIC, Prague	ETA-17/0005 / 2017-02-20

a) 本項のすべてのデータは ETA-17/0005: 2017-02-20 発行に準拠

静的・準静的として作用する荷重 (単体アンカー対象)

本項における全てのデータは下記条件による。

- ひび割れを想定しないコンクリート C 20/25, f_{ck,cube} = 25 N/mm² (JIS 規格 Fc≒21N/mm2 相当) TE ロータリーハンマードリルの打撃モードで穿孔した場合の荷重値
- ダイヤモンドコア穿孔禁止
- 所定のアンカー施工 (施工条件・手順参照) へりあきとアンカーピッチによる影響がない 表に示された埋込み長、母材厚
- 施工時および養生時の母材温度は 0℃ から +40℃ 以内でなければならない
- 表に示された温度範囲 I および II
- 鋼材破壊

許容安全荷重 引張として作用する荷重

全ねじボルト HIT-V 5.8	3		M8	M10	M12	M16
温度範囲 I (24/40°C)						
埋込み長	h _{ef,min}	[mm]	60	60	70	80
母材厚	h	[mm]	100	100	100	116
引張荷重	N_{rec}	[kN]	4,2	5,2	7,3	9,6
埋込み長	$h_{ef,10d}$	[mm]	80	100	120	160
母材厚	h	[mm]	110	130	150	196
引張荷重	N_{rec}	[kN]	5,6	8,7	12,6	19,2
埋込み長	$h_{ef,20d}$	[mm]	160	200	240	320
母材厚	h	[mm]	190	210	270	356
引張荷重	N_{rec}	[kN]	8,7	13,8	20,1	37,4
温度範囲 II (50/80°C)						
埋込み長	$h_{\text{ef,min}}$	[mm]	60	60	70	80
母材厚	h	[mm]	100	100	100	116
引張荷重	N_{rec}	[kN]	3,0	3,7	5,2	7,2
埋込み長	$h_{\text{ef,10d}}$	[mm]	80	100	120	160
母材厚	h	[mm]	110	130	150	196
引張荷重	N_{rec}	[kN]	4,0	6,2	9,0	14,4
埋込み長	$h_{ef,20d}$	[mm]	160	200	240	320
母材厚	h	[mm]	190	210	270	356
引張荷重	N_{rec}	[kN]	8,0	12,5	18,0	28,7

許容安全荷重 せん断として作用する荷重

全ねじボルト HIT-V 5.8			M8	M10	M12	M16
せん断	V_{rec}	[kN]	5,1	8,6	12,0	22,3

材料

機械的特性

アンカーサイズ		M8	M10	M12	M16	
	HIT-V 5.8		500	500	500	500
公称引張強度 公称引張強度	HIT-V 8.8	_	800	800	800	800
「f _{uk} 」	HIT-V-R	[N/mm ²]	700	700	700	700
'uk	HIT-V- HCR	_	800	800	800	800
	HIT-V 5.8	-	400	400	400	400
	HIT-V 8.8		640	640	640	640
降伏強度 f _{yk}	HIT-V-R	[N/mm ²]	450	450	450	450
,	HIT-V- HCR	-	640	640	640	640
応力断面 As	HIT-V	[mm²]	36,6	58,0	84,3	157
曲げ抵抗 W	HIT-V	[mm³]	31,2	62,3	109	277

材質 HIT-V

你員 UII-A	
種類	材料
亜鉛めっき鋼	
全ねじボルト,	強度区分 5.8; 破断伸び A5 > 8% 延性
HIT-V 5.8 (F)	電気亜鉛めっき 5μm 以上、(F) 溶融亜鉛めっき 45 μm 以上
全ねじボルト,	強度区分 8.8;破断伸び A5 > 12% 延性
HIT-V 8.8 (F)	電気亜鉛めっき 5μm 以上、(F) 溶融亜鉛めっき 45 μm 以上
ワッシャー	電気亜鉛めっき 5 μm 以上, 溶融亜鉛めっき 45 μm 以上
ナット	ナットの強度区分は全ねじボルトの強度区分と同等
7 9 1.	電気亜鉛めっき 5μm 以上, 溶融亜鉛めっき 45 μm 以上
ステンレス鋼	
全ねじボルト,	強度区分 70 (M24 以下)強度区分 50 (M24 以上)
土板のパウレド、 HIT-V-R	破断伸び A5 > 8% 延性
TITI V IX	ステンレス鋼 1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362
ワッシャー	ステンレス鋼 1.4401, 1.4404, 1.4578, 1.4571, 1.4439, 1.4362 EN 10088-
	1:2014
ナット	ステンレス鋼 1.4401, 1.4404, 1.4578, 1.4571, 1.4439, 1.4362 EN 10088-
	1:2014
高耐食性合金鋼	
全ねじボルト,	強度区分 80(M20 以下)強度区分 70(M20 以上)
HIT-V-HCR	破断伸び A5 > 8% 延性
THE VITCH	高耐食性合金鋼 1.4529; 1.4565;
ワッシャー	高耐食性合金鋼 1.4529, 1.4565 EN 10088-1:2014
ナット	高耐食性合金鋼 1.4529, 1.4565 EN 10088-1:2014
•	

施工条件

施工温度範囲:

+5°C $\sim +40$ °C

使用温度範囲

HIT-1 注入方式アンカーは以下の温度範囲にて適用されます。母材温度の上昇により、設計付着強度が低下する場合があります。

温度範囲	母材温度	長期最大母材温度	短期最大母材温度
温度範囲 I	-40 °C \sim +40 °C	+24 °C	+40 °C
温度範囲 II	-40 °C ∼ +80 °C	+50 °C	+80 °C

短期最大母材温度

一日程度の短いサイクルの気温の変化に伴って、母材温度が変化するときの最大母材温度を指します。

長期最大母材温度

長期間にわたる継続的な気温変化に伴って、母材温度が変化するときの最大母材温度を指します。

ゲル状時間、硬化時間

母材温度 T _{BM}	最大ゲル状時間 t _{work}	最小硬化時間 t _{cure}
$-5^{\circ}C \leq T_{BM} < 0^{\circ}C$	1,5 h	6 h
$0^{\circ}C \leq T_{BM} < 5^{\circ}C$	45 min	3 h
$5^{\circ}C \leq T_{BM} < 10^{\circ}C$	25 min	2 h
$10^{\circ}\text{C} \leq \text{T}_{\text{BM}} < 15^{\circ}\text{C}$	20 min	100 min
$15^{\circ}\text{C} \leq \text{T}_{\text{BM}} < 20^{\circ}\text{C}$	15 min	80 min
$20^{\circ}\text{C} \leq \text{T}_{\text{BM}} < 30^{\circ}\text{C}$	6 min	45 min
$30^{\circ}\text{C} \leq \text{T}_{\text{BM}} < 34^{\circ}\text{C}$	4 min	25 min
$35^{\circ}C \leq T_{BM} < 40^{\circ}C$	2 min	20 min

施工条件詳細

全ねじボルト – サイズ		M8	M10	M12	M16
穿孔径(ビットの呼び径)	d ₀ [mm]	10	12	14	18
ボルトの公称径	d [mm]	8	10	12	16
取付物の許容下穴径	d _f [mm]	9	12	14	18
スチールブラシ呼び径	d_0 [mm[10	12	14	16
最小母材厚	h _{min} [mm]	h _{ef}	+ 30 mm ≥ 10	0 mm	$h_{ef} + 2d_0$
有効埋込み長	h _{ef,min} [mm]	60	60	70	80
(= 穿孔長) h _{ef} = h ₀	h _{ef,max} [mm]	160	200	240	320
最小アンカーピッチ	s _{min} [mm]	40	50	60	80
最小へりあき	c _{min} [mm]	40	50	60	80

標準施工工具

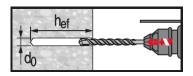
アンカーサイズ	M8	M10	M12	M16	
ロータリーハンマードリル	TE2(-A) - TE30(-A)				
その他工具	ダストポンプ ($h_{ef} \le 10 \cdot d$) エアーコンプレッサー ^{b)} ブラシ $^{c)}$,ディスペンサー,ピストンプラグ				

- a) 250mm 以上(M8 \sim M12) または 20· ϕ 以上 (ϕ > 12mm)の穿孔には、エアーコンプレッサー で延長ホースを使用する。
- b) 250mm 以上(M8 \sim M12) または 20· ϕ 以上 (ϕ > 12mm) の穿孔には、ラウンドブラシで自動ブラッシングする。

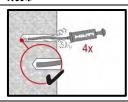
清掃ツールとセッティングツールの組み合わせ

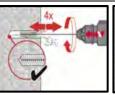
	Drill and c	lean [mm]	Installation
HIT-V	Hammer drilling Brush HIT-RB		Piston plug HIT-SZ
минишим			
M8	10	10	10
M10	12	12	12
M12	14	14	14
M16	18	18	18

施工手順


*詳しい施工方法は、製品に同封されている施工手順を参照のこと

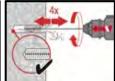
安全上の規定


適切で安全な施工を行うため、使用する前に材料安全データシート (MSDS) を必ず確認する。ヒルティ Hilti HIT-1 を使って作業する際は、しっかり密着する保護ゴーグルと保護手袋を使用すること。


穿孔

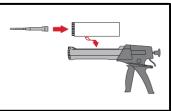
ハンマードリル穿孔 (HD) 乾燥、湿潤コンクリートのみ

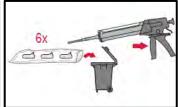
清掃



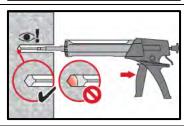
機械ブラッシングによる手動清掃 (MCMC)

穿孔径 (ビットの呼び径) d₀ ≤ 20 mm 穿孔長 h₀ ≤ 10·d

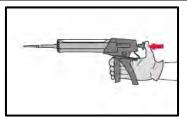


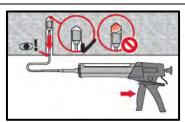

機械ブラッシングとエアーコンプレッ サーによる清掃 (CACMB)

全ての穿孔長 ho.

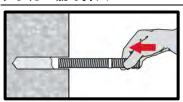


樹脂注入

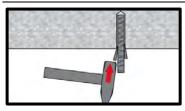



樹脂注入準備

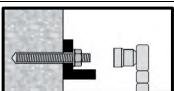
樹脂注入方法 (穿孔長の 2/3 ぐらい満たす)



ディスペンサーの圧力解放



天井面施工と(または)穿孔長hef 250 mm以上の**樹脂注入**方法


アンカー筋の挿入

ゲル状時間 twork でのアンカー筋挿入

天井面施工のための、ゲル状時間 t_{work} での**アンカー筋挿入**

アンカーへの載荷は、 硬化時間 t_{cure} が 過ぎてから荷重をかける

HIT-1 接着系注入方式アンカー

アンカーシステム

アンカーボルト:

特長

Hilti HIT-1 / HIT-1 CE

300 ml

HIT-V HIT-V-F

HIT-V-R

チューブカートリッジ

- 中空および中実の粘土質レンガ

- 2液混合
- 早い養生時間
- 天井面への施工対応
- 幅広い用途と容易な施工
- 柔軟に対応可能な施工深さ、 取付物厚
- 小さいへりあきとアンカーピッチに対応
- HIT-SC スリーブ使用で樹脂の 充填管理

メッシュスリーブ: HIT-SC (16)

母材

荷重条件

レンガ

中空レンガ

静的/準静的

施工条件

ロータリーハンマー ドリル穿孔

認証 / 証明書

種類	機関 / 研究所	No. / 発行年月日
ヒルティ社内データ ^{a)}	Hilti	2017-11-28

b) 本項の全てのデータはヒルティ社内データによる。

静的・準静的として作用する荷重 (単体アンカー対象)

本項における全てのデータは下記条件による。

- 中実レンガ:TE ロータリーハンマードリルの打撃モードで穿孔した場合の荷重値
- 中空レンガ: TE ロータリーハンマードリルの回転モードで穿孔した場合の荷重値
- 所定のアンカー施工(施工条件・手順参照)
- 取付物の鋼材の材質は、以下のデータ参照
- 適切なサイズ(径と長さ)と最小鋼材区分 5.6 の全ねじボルト
- 施工時および養生時の母材温度は 0℃ から +40℃ 以内でなければならない

許容安全荷重 中実レンガ

アンカーサイズ				M	18	M	10	М	12
メッシュスリー	ブ		HIT-SC	-	16x85	-	16x85	-	16x85
圧縮強度		f_b	[N/mm ²]	28	28	28	28	28	28
有効埋込み長		h _{ef}	[mm]	80	80	90	80	100	80
引張強度	40°C/24°C	NI	[kN]	0,7	0,9	0,7	0,9	0,7	0,9
	80°C/50°C	N_{rec}	[KIN]	0,4	0,6	0,4	0,6	0,4	0,6
せん断荷重		V_{rec}	[kN]	1,3	1,3	1,7	1,6	2,5	1,7

許容安全荷重 中空レンガ

アンカーサイズ		M8		M10		M12			
中空レンガ種類	1			HZL 12	Doppio Uni	HZL 12	Doppio Uni	HZL 12	Doppio Uni
メッシュスリー	-ブ		HIT-SC	16	x85	16	x85	16	x85
圧縮強度		f _b	[N/mm ²]	12	28	12	28	12	28
有効埋込み長		h _{ef}	[mm]	80	80	80	80	80	80
引張強度	40°C/24°C	NI	[kN]	0,35	0,25	0,35	0,25	0,45	0,35
	80°C/50°C	N_{rec}	[KIN]	0,20	0,15	0,20	0,20	0,25	0,20
せん断荷重		V_{rec}	[kN]	1,40	0,85	1,40	0,85	1,40	0,85

レンガの種類は多様なため、上記の母材や施工条件外の場合は、すべての用途において荷重値は現場試験により算 出する必要があります。

材料

材質

種類	材料
全ねじボルト HIT-V 5,8 (F)	強度区分 5,8, A5 > 8% 延性 電気亜鉛めっき 5μm 以上 (F) 溶融亜鉛めっき 45 μm 以上
全ねじボルト HIT-V 8,8 (F)	強度区分 8,8, A5 > 12% 延性 電気亜鉛めっき 5μm 以上 (F) 溶融亜鉛めっき 45 μm 以上
全ねじボルト HIT-V-R	強度区分 70(M24 以下)、強度区分 50(M24 以上)、A5 > 8% 延性 ステンレス鋼 1,4401; 1,4404; 1,4578; 1,4571; 1,4439; 1,4362
全ねじボルト HIT-V-HCR	強度区分 70(M24 以下)、強度区分 50(M24 以上)、A5 > 8% 延性 高耐食性合金鋼 1,4528; 1,4565;
	電気亜鉛めっき 5 μm 以上、溶融亜鉛めっき 45 μm 以上
ワッシャー	ステンレス鋼 1,4401, 1,4404, 1,4578, 1,4571, 1,4439, 1,4362 EN 10088-1:2014
	高耐食性合金鋼 1,4529, 1,4565 EN 10088-1:2014
	ナットの強度区分は全ねじボルトの強度区分と同等 電気亜鉛めっき 5μm 以上、溶融亜鉛めっき 45 μm 以上
ナット	ナットの強度区分は全ねじボルトの強度区分と同等 ステンレス鋼 1,4401, 1,4404, 1,4578, 1,4571, 1,4439, 1,4362 EN 10088-1:2014
	ナットの強度区分は全ねじボルトの強度区分と同等 高耐食性合金鋼 1,4529, 1,4565 EN 10088-1:2014
HIT-SC スリーブ	プラスチック部: FPP 20T, メッシュ部: PA6,6 N500/200

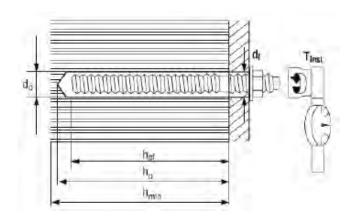
施工条件

施工温度範囲:

 $0^{\circ}\text{C} \sim +40^{\circ}\text{C}$

使用温度範囲

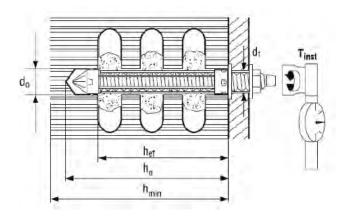
HIT-1 注入方式アンカーは以下の温度範囲にて適用されます。母材温度の上昇により、設計付着強度が低下する場合があります。


温度範囲	母材温度	長期最大母材温度	短期最大母材温度
温度範囲 I	-40 °C ∼ +40 °C	+24 °C	+40 °C
温度範囲 II	-40 °C ∼ +80 °C	+50 °C	+80 °C

ゲル状時間、硬化時間

母材温度 T _{BM}	最大ゲル状時間 t _{work}	最小硬化時間 t _{cure}
$0^{\circ}C \leq T_{BM} < 5^{\circ}C$	45 min	3 h
$5^{\circ}C \leq T_{BM} < 10^{\circ}C$	25 min	2 h
10°C ≤ T _{BM} < 20°C	15 min	100 min
20°C ≤ T _{BM} < 30°C	6 min	45 min
$30^{\circ}\text{C} \leq \text{T}_{\text{BM}} < 40^{\circ}\text{C}$	2 min	25 min

施工詳細 中実レンガ


アンカーサイズ		M	8 M		10		12	
メッシュスリーブ	HI	T-SC	-	16x85	-	16x85	-	16x85
穿孔径(ビットの呼び径)	d_0	[mm]	10	16	12	16	14	18
取付物の許容下穴径	d _f	[mm]	9	9	12	12	14	14
有効埋込み長	h _{ef}	[mm]	80	80	90	80	100	80
穿孔長	h_0	[mm]	80	95	90	95	100	95
最小母材厚	h _{min}	[mm]	115	115	115	115	115	115
最大締付トルク	T_{max}	[Nm]	6	6	10	8	10	8

施工詳細 中空レンガ

		M8		M10		M12		
アンカーサイズ			HLZ2	Doppio Uni	HLZ2	Doppio Uni	HLZ2	Doppio Uni
メッシュスリーブ	HI	T-SC	16:	x85	16:	x85	16:	x85
穿孔径(ビットの呼び径)	d_0	[mm]	1	6	1	.6	1	8
取付物の許容下穴径	d _f	[mm]	(9	1	.2	1	4
有効埋込み長	h _{ef}	[mm]	8	0	8	30	8	0
穿孔長	h_0	[mm]	9	5	g	5	9	5
最小母材厚	h _{min}	[mm]	1:	15	1	15	1:	15
最大締付トルク	T_{max}	[Nm]	4	4		4	4	4

標準施工工具

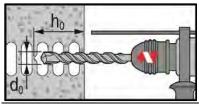
W-1/0					
アンカーサイズ	M8	M10	M12		
ロータリーハンマードリル	TE2(-A) - TE30(-A)				
その他工具	Blow out pump				
	Set of cleaning brushes, dispenser				

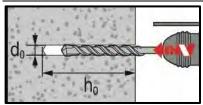
清掃ツールとヤッティングツールの組み合わせ

	Sieve sleeve	Drill and clean [mm]			
HIT-V	HIT-SC	Hammer drilling	Brush HIT-RB		
миниции <mark>В</mark> т					
M8 ^{a)}	-	10	10		
M10 ^{a)}	-	12	12		
M12 ^{a)}	-	14	14		
M8	HIT-SC 16x85	16	16		
M10	HIT-SC 16x85	16	16		
M12	HIT-SC 18x85	18	18		

a) メッシュスリーブ HIT-SC 無しでの施工は中実レンガの場合のみ.

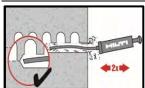
施工手順

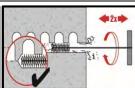

*詳しい施工方法は、製品に同封されている施工手順を参照のこと

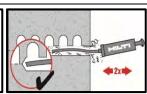

安全上の規定

適切で安全な施工を行うため、使用する前に材料安全データシート (MSDS) を必ず確認する。ヒルティ Hilti HIT-1 を使って作業する際は、しっかり密着する保護ゴーグルと保護手袋を使用すること。

穿孔

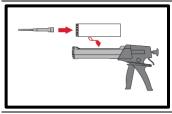


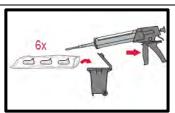

中空レンガ:回転モード



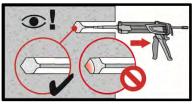
中実レンガ: 打撃モード

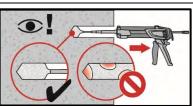
清掃

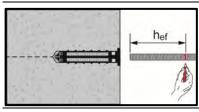


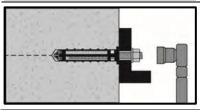


手動清掃 (MC)


中実レンガ:メッシュスリーブ無し


樹脂注入

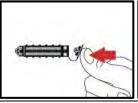

樹脂注入 準備

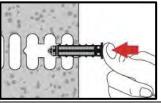


穿孔した孔への樹脂注入

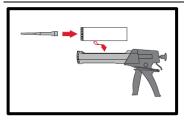
アンカー筋挿入

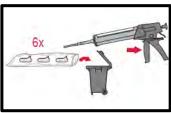
ゲル状時間 t_{work} に**アンカー筋挿入**




アンカーへの載荷は、 硬化時間 t_{cure} が 過ぎてから荷重をかける

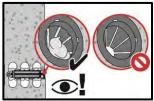
中空レンガおよび中実レンガ:メッシュスリーブ使用


メッシュスリーブ準備

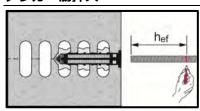


キャップを閉じ、手でメッシュスリー ブを穿孔した孔に挿入

樹脂注入



樹脂注入 準備


樹脂注入:中空レンガ

メッシュスリーブ HIT-SC に**樹脂注入**

アンカー筋挿入

ゲル状時間 t_{work} に**アンカー筋挿入**

アンカーへの載荷は、 硬化時間 t_{cure} が 過ぎてから荷重をかける

HIT-HY 270 接着系注入方式アンカー レンガ/中空レンガ専用

Injection mortar system

Hilti HIT-HY 270

330ml または 500ml フォイルパック

- レンガ・中空レンガなど様々な 母材への適用

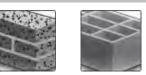
特長

- 充電式バッテリーディスペンサー の併用で多目的で容易な施工

- 多様性のある深さや取付物厚

- 小さいへりあきとアンカーピッ チに対応

- 上向き施工にも適している



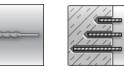

HIT-V ボルト HIT-V-F ボルト HIT-V-R ボルト HIT-V-HCR ボルト (M6-M16)

HIT-IC 内ねじスリーブ (M8-M12)

HIT-SC メッシュスリーブ (12-22)

適用母材

荷重条件



静的/準静的

その他

耐火

施工条件

ハンマードリル穿孔 (回転打撃)

選択可能な 埋込み深さ

小さいへりあき / アンカーピッチ

欧州技術認証 ETA

CE 適合製品

耐腐食

高耐腐食

PROFIS Engineering 設計ソフト対応

認証 / 証明書

種類	機関 / 研究所	No. / 発行年月日
ETA 欧州技術認証	DIBt, Berlin	ETA-13/1036 / 2017-12-12
耐火試験報告書	MFPA, Leipzig	PB 3.2/14-179-1 / 2014-09-05

設計

- 留付けの設計を行う際は、アンカー設計や組積造に知識のある設計者の責任下で行う。
- 計算条件や図面に設計荷重を明記し、アンカー位置を図面上で示す。
- 静的および準静的荷重における留付けとする。

基本荷重データ (単体アンカー対象)

荷重表は単体アンカーへの載荷に対する設計荷重を示している。

本項における全てのデータは下記条件による。

- へりあき c ≥ c*. その他の条件の場合には、ヒルティ PROFIS Engineering ソフトウェアにて設計を行う。
- 所定のアンカー施工 (施工条件・手順参照)

施工条件		Hilti HIT-HY 270 (HIT-V または HIT-IC 使用時)			
		レンガ	中空レンガ		
ハンマードリル		回転・打撃 モード	回転 モード		
使用条件: dry または wet		d/d:乾燥環境(施工時・使用時とも)、屋内使用 w/d:乾燥または湿潤(施工時)、乾燥環境(使用時)、屋内使用 w/w:乾燥または湿潤環境(施工時・使用時とも)			
施工方向 組積		水平			
施工方向 天井用レンガ		上向き			
施工時の母材温度		+5° C ∼ +40° C	-5° C ∼ +40° C		
使用温度	温度範囲 Ta:	-40 °C ~ +40 °C (最大 ·	· 長期:+24 °C 、短期:+40 °C)		
	温度範囲 Tb:	-40 °C ~ +80 °C (最大 ·	長期:+50 °C 、短期:+80 °C)		

現場載荷試験

Hilti HIT-HY 270 ETA、または、技術マニュアルに記載のないレンガや中空レンガの場合、ETAG029、Annex Bを参照し、現場載荷試験(引抜試験または荷重確認試験)によって平均耐力を決定する。

材料

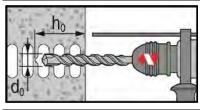
材質

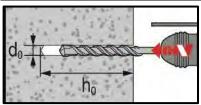
	材質
HIT-V 5.8 (F) ボルト	炭素鋼 強度区分 5.8、A5 > 8% 延性 電気亜鉛めっき ≥ 5 μm; (F) 溶融亜鉛めっき ≥ 45 μm
HIT-V 8.8 (F) ボルト	炭素鋼 強度区分 8.8、A5 > 8% 延性 電気亜鉛めっき ≥ 5 μm; (F) 溶融亜鉛めっき ≥ 45 μm
HIT-V-R ボルト	ステンレス鋼 等級 A4 A5 > 8%延性、強度区分 70、 1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362
HIT-V-HCR ボルト	高耐腐食鋼、A5 > 8% 延性 1.4529, 1.4565
ワッシャー	電気亜鉛めっき、溶融亜鉛めっき ステンレス鋼 1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362 高耐腐食鋼 1.4529, 1.4565 EN 10088
ナット	鋼 強度区分 8 電気亜鉛めっき ≥ 5 µm;溶融亜鉛めっき ≥ 45 µm 強度区分 70、ステンレス鋼 等級 A4, 1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362 強度区分 70、高耐腐食鋼、1.4529; 1.4565
HIT-IC 内ねじスリーブ	A5 > 8% 延性; 電気亜鉛めっき ≥ 5 μm
HIT-SC メッシュスリーブ	フレーム: Polyfort FPP 20T ; メッシュ: PA6.6 N500/200

母材:

- レンガ (大きいサイズや高強度レンガにも対応)
- 中空レンガ
- モルタル強度: EN 998-2: 2010 に準じて M2.5
- 規定外の母材については、現場載荷試験結果より算出した低減係数を設計において考慮する。

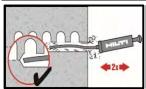
施工手順

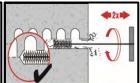

*詳しい施工方法は、製品に同封されている施工手順を参照のこと

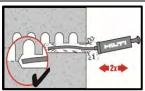

安全上の規定

適切で安全な施工を行うため、使用する前に材料安全データシート (MSDS) を必ず確認する。ヒルティ HIT-HY 270 を使って作業する際は、しっかり密着する保護ゴーグルと保護手袋を使用すること。

穿孔

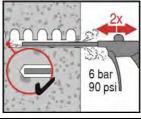


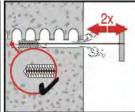

中空レンガ:回転モード

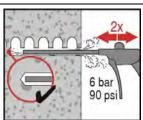


レンガ: 回転・打撃モード

清掃

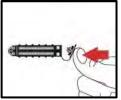


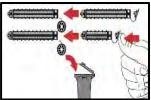


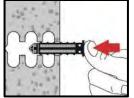


手動清掃 (MC)

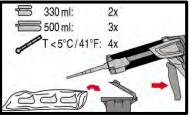
穿孔径 $d_0 \le 18$ mm 穿孔長 $h_0 \le 100$ mm



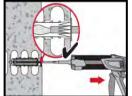

圧縮空気による清掃 (CAC)

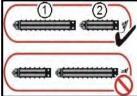

穿孔長 h₀ ≤ 300 mm

樹脂注入準備(メッシュスリーブを使用する中空レンガとレンガの場合)



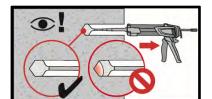
蓋を閉じ、手でメッシュスリーブを 挿入する。


全てのアプリケーション対象

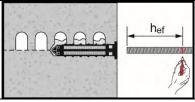


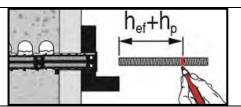
フォイルパックの容量による既定の 捨てショットを行い注入準備をする。

空隙を作らないよう樹脂を注入する方法



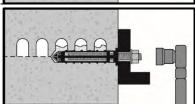
方法 1


HIT-SC メッシュスリーブを2つ使用 する場合、延長スリーブを使用する。



方法 2

レンガの場合はメッシュスリーブを 使用せず、直接注入する。


アンカー筋の挿入

マーキングとアンカー筋の挿入

ゲル状時間 t_{work} 内に、所定の埋込深さまで挿入する。

アンカー筋へ載荷

硬化時間 t_{cure} 経過後に取付物を設置する。所定のトルク値 T_{max} を超える締付けをしない。

HDA セルフアンダーカットアンカーシステム

アンカー名称・サイズ

HDA-P

HDA-PR

HDA-PF

HDA-T

HDA-TR

HDA-TF

現物合わせ用

先行作業用

- ETA C1 およびC2 認証取得により、世界最高の耐震性能

- 支圧力による固着

特長

- 埋込み長さに対し、より狭いへりあき、アンカーピッチに出来る
- セルフアンダーカット
- 高耐力、頭付きスタッドに匹敵する 性能
- 専用ツールによる総合施工システム (アンカー、ストップドリルビット、 施工ツール、ハンマードリル)
- アンカーのマーキングによる施工 管理が可能
- 施工後でも完全撤去可能
- 耐火、疲労、衝撃、地震等に関する 国際認証データあり

母材 荷重条件

THE REAL PROPERTY AND ADDRESS OF THE PROPERTY ADDRESS OF THE PROPERTY AND ADDRESS OF THE PROPERTY ADDRESS OF THE PROPERTY AND ADDRESS OF THE PROPERTY ADDRESS

ひび割れを想定しないコンクリート

ひび割れを想定した コンクリート

静的/

準静的荷重 E

耐震認定 ETA-C1, C2

疲労荷重

衝撃荷重

耐火

施工条件

その他

ETA

A4 316

ハンマー ドリル穿孔

狭いへりあき とアンカーピッチ

頭付きスタッドに匹敵

欧州技術認証 CE 適合製品

適合製品 PROFIS A

PROFIS Anchor 設計ソフト対応

原子力発電所での使用実績

耐腐食

認証 / 証明書

種類	機関 / 研究所	No. / 発行年月日
ETA 欧州技術認証 a)	CSTB, Paris	ETA-99/0009 / 2015-01-06
ICC-ES 報告書(耐震) b)	ICC evaluation service	ESR 1546 / 2014-02-01
民間防衛施設での耐衝撃施工	Federal Office for Civil Protection, Bern	BZS D 09-601/ 2009-10-21
原子力発電関連	DIBt, Berlin	Z-21.1-1987 / 2014-07-22
疲労荷重	DIBt, Berlin	Z-21.1-1693 / 2013-07-29
評価報告書(耐火)	Warringtonfire	WF 327804/A 2016-05-3

- a) このセクションにおける HDA-P(R)および HDA-T(R)に関する全てのデータは 2015 年 1 月 6 日発行の ETA-99/0009 に 基づいております。シェラダイジング加工した HDA-PF および HDA-TF アンカーに関しては承認対象外となっております。
- b) ICC による技術データ詳細は HNA FTM 参照.

静的/準静的 荷重 (単体アンカー対象)

本項における全てのデータは下記条件による:

- 所定のアンカー施工 (施工条件・手順参照)
- へりあきやアンカーピッチの影響がない
- 鋼材破壊
- 最小母材厚
- コンクリート圧縮強度 C 20/25, f_{ck,cube} = 25 N/mm² (JIS 規格 Fc≒21N/mm2 相当)

有効埋込長さ

アンカーサイズ		M10	M12	M16	M20
有効埋込み長	h _{ef} [mm]	100	125	190	250

平均耐力

アンカー	サイズ			M	10		M	12				M	16			M2	(0 ^{a)}	
	を想定しない																	
引張 N _{Rk}	HDA-P(F), H	IDA-T(F) [kN]	4	6		6	7				12	26			19	92	
3132C - FRK	HDA-PR, HD				6		6	7				12	26				<u>-</u>	
ひび割れ	を想定したこ	コンクリ	ート															
引張 N _{Rk}	HDA-P(F), H	IDA-	[kN	2	5		3	5				7	5			9	5	
	HDA-PR, HD	A-TR	1	2	5		3	5				7	5				-	
ひび割れ	を想定したこ	コンクリ	− ト、	ひひ	割れ	を想	定し	ない	コンク	フリー	-ト (共道	鱼)					
		$\frac{t_{fix,min}}{t_c} = [mm]^{-1}$			15≤	10≤	1	5≤	20≤	15≤	20≤	25	≤ 30≤	35≤	20≤	25≤	40≤	55≤
	HDA-T(F) ^{b)}	$t_{fix,max}$ (mm)			≤20	<15	<	20	≤50	<20	<25	<3	0 <35	≤60	<25	<40	<55	≤100
		$\frac{t_{\text{fix,max}}}{V_{\text{Rk}}}$ [kN] 6.			70	80	8	0	100	140 ^{c)}	140	15	5 170	190	205	205	235	250
せん断		t _{fix,min}			15≤	10≤	15≤	20≤	30≤	15≤	20)≤	25≤	35≤		-	-	
V_{Rk}	HDA-TR	A-TR t _{fix,max}			≤20	<15	<20	<30	≤50	<20	<2	25	<35	≤60		-		
		V _{Rk} [kN]			71	87	87	94	109	152	15	52	158	170		-		
	HDA-P(F)b)	[kN]			2		3	0	•			6	2			9	2	
	HDA-PR		2	3		3	4				6	:3			-	-		

- a) HDA M20: 電気亜鉛めっきのみ
- b) HDA-PF および HDA-TF アンカーは ETA-99/0009 の対象外
- c) 上表の数値はセンタリングワッシャー (t=5mm) 使用時のみ.

設計荷重

アンカー	サイズ	M10	M12	M16	M20 ^{a)}
ひび割れ	を想定しないコンクリート	•			
引集 N ₌ .	HDA-P(F), HDA-T(F) [kN]	30,7	44,7	84,0	128,0
אאו אווא	HDA-PR, HDA-TR	28,8	41,9	78,8	-
ひび割れ	を想定したコンクリート				
引張 N _{Rd}	HDA-P(F), HDA-	16,7	23,3	50,0	63,3
	HDA-PR, HDA-TR	16,7	23,3	50,0	-

ひび割れ	を想定したこ	コンクリ	− ト、	ひひ	割れ	を想	定し	ない	コン	フリー	-ト (供道	重)					
		t _{fix,min}	-[mm]	10≤	15≤	10≤	1!	5≤	20≤	15≤	20≤	25	≤ 30≤	35≤	20≤	25≤	40≤	55≤
	HDA-T(F) ^{b)}	t _{fix,max}		<15	≤20	<15	<	20	≤50	<20	<25	<3	0 <35	≤60	<25	<40	<55	≤100
		V_{Rk}	[kN]	43,3 ^{c)}	46,7	53,3	53	3,3	66,7	93,3 ^{c)}	93,3	103	,3 113,	3 126,7	136,7°)	136,7	156,7	166,7
せん断		t _{fix,min}	_[mm]	10≤	15≤	10≤	15≤	20≤	30≤	15≤	20)≤	25≤	35≤			-	
V_{Rd}	HDA-TR	t _{fix,max}	_,,,,,,,,	<15	≤20	<15	<20	<30	≤50	<20	<2	25	<35	≤60			-	
		V_{Rk}	[kN]	53,4 ^{c)}	53,4	65,4 ^{c)}	65,4	70,7	82,0	114,3°	114	1,3	118,8	127,8			_	
	HDA-P(F)b)		_ [kN]	17	',6		24	,0			I.	49	,6			73	3,6	
	HDA-PR		[1014]	17	17,3		25	,6				47	',4				_	

- a) HDA M20: 電気亜鉛めっきのみ
- b) HDA-PF および HDA-TF アンカーは ETA-99/0009 の対象外
- c) 上表の数値はセンタリングワッシャー (t=5mm) 使用時のみ.

許容安全荷重 d)

n n X z																		
アンカー	サイズ			M:	10		M:	12				M	16			M2	(0 ^a)	
ひび割れ	を想定しない	ハコンク	リート	•														
引張 N _{Rk}	HDA-P(F), F	IDA-T(F) ^t [kN]	21	,9		31	,9				60	0,0			91	.,4	
או אוור KK	HDA-PR, HD		[]		,5		29	,9				56	5,3				-	
ひび割れ	を想定したこ	コンクリ	- ト															
引張 N _{Red}	HDA-P(F), F	IDA-	_[kN]	11	.,9		16	5,7				35	5,7			45	5,2	
	HDA-PR, HD	A-TR	-[KIN]		,9		16	,7				35	5,7					
ひび割れ	を想定しない	ハコンク	リート			れを	想定し	した	コンク	フリー	٠٢	()	ŧ通)					
		t _{fix,min}	_[mm]	10≤	15≤	10≤	15	5≤	20≤	15≤	20≤	25	5≤ 30≤	35≤	20≤	25≤	40≤	55≤
	HDA-T(F) ^{b)}	t _{fix,max}		<15	≤20	<15	5 <2	20	≤50	<20	<25	<3	30 <35	≤60	<25	<40	<55	≤100
		V_{Rk}	[kN]	31 ^{c)}	31	38 ^{c)}	3	8	38	67 ^{c)}	67	7	4 81	90	98 ^{c)}	98	112	119
せん断		t _{fix,min}	-[mm]		15≤	10≤	15≤	20≤	30≤	15≤	20)≤	25≤	35≤			-	
V_{Rec}	HDA-TR	$t_{\text{fix,max}}$			≤20	<15	<20	<30	≤50	<20	<2	25	<35	≤60		-	-	
		V_{Rk}	[kN]	38 ^{c)}	38	47 ^{c)}	47	50	59	82 ^{c)}	82	2	85	91			-	
	HDA-P(F)b)		[kN] <u>1</u>		,6		17	',1	•		•	3!	5,4			52	2,6	
	HDA-PR		_ [KIN]		2,3			3,2					3,8				_	

- a) HDA M20: 電気亜鉛めっきのみ
- b) HDA-PF および HDA-TF アンカーは ETA-99/0009 の対象外
- c) 上表の数値はセンタリングワッシャー (t=5mm) 使用時のみ
- d) 部分安全係数は、荷重の種類ごと、国ごとの規定により決められる係数で、ここでは $\gamma=1.4$ を採用している.

地震荷重(単体アンカー対象)

本項における全てのデータは下記条件による:

- 所定のアンカー施工 (施工条件・手順参照)
- へりあきやアンカーピッチの影響がない
- 鋼材 破壊
- 最小母材厚
- コンクリート圧縮強度 C 20/25, f_{ck,cube} = 25 N/mm² (JIS 規格 Fc≒21N/mm2 相当)
- a_{gap} = 1,0 (フィリングワッシャーセット使用)

有効埋込み長さ 耐震認証 C2 および C1 による

Anchor size	M10	M12	M16	M20
有効埋込み長さ h _{ef}	[mm] 100	125	190	250

平均耐力 耐震認定 C2 の場合

アンカー	サイズ			M	10		M	12				М	116				M2	0 a)	
引張	HDA-P, HDA	A-T	-[kN]	2	5		3	5				7	75				9	5	
$N_{Rk,seis}$	HDA-PR, HD	A-TR	-[KIN]	2	5		3	5				-	75				-	-	
		t _{fix,min}	-[mm]	10≤	15≤	10≤	1	5≤	20≤	15≤	20≤	25	5≤	30≤	35≤	20≤	25≤	40≤	55≤
	HDA-T	t _{fix,max}	_[!!!!!]	<15	≤20	<15	< :	20	≤50	<20	<25	<3	30	<35	≤60	<25	<40	<55	≤100
		V_{Rk}	[kN]	39	42	56	5	6	70	84	84	9	3	102	112	144	144	165	175
せん断		t _{fix,min}	-[mm]	10≤	15≤	10≤	15≤	20≤	30≤	15≤	20)≤	2	5≤	35≤		-	-	
$V_{Rk,seis}$	HDA-TR	t _{fix,max}	_[]	<15	≤20	<15	<20	<30	≤50	<20	<2	25	<	35	≤60		-	=	
		$V_{Rk} \\$	[kN]	21,5	21,5	30,5	30,5	33,0	38,0	45,5	45	,5	47	7,5	51		-	-	
	HDA-P		_ [kN]	2	0		2	4			•	į	56	•			8	3	
	HDA-PR		[KIV]	10),5		13	3,5				2	8,5					-	

a) HDA M20: 電気亜鉛めっきのみ

設計荷重 耐震認定 C2 の場合

		<u> </u>	<u> </u>															
アンカー	サイズ			M	10		M	12				М	16			M2	(0 a)	
引張	HDA-P, HDA	A-T	_[kN]	16	5,7		23	3,3				5	0			63	3,3	
$N_{Rd,seis}$	HDA-PR, HD	A-TR	_ [KI V]	16	5,7		23	3,3				5	0				-	
		$t_{\text{fix,min}}$	_[mm]		15≤	10≤	1	5≤	20≤	15≤	20≤	25	i≤ 30	≤ 35≤	20≤	25≤	40≤	55≤
	HDA-T	t _{fix,max}	_[!!!!!!]	<15	≤20	<15	5 <	20	≤50	<20	<25	<3	30 <3	5 ≤60	<25	<40	<55	≤100
		V_{Rk}	[kN]	26	28	37,3	3 37	7,3	46,7	56	56	6	2 68	74,7	96	96	110	116,7
せん断		t _{fix,min}	-[mm]	10≤	15≤	10≤	15≤	20≤	30≤	15≤	20)≤	25≤	35≤			-	
$V_{Rd,seis}$	HDA-TR	t _{fix,max}	_[]	<15	≤20	<15	<20	<30	≤50	<20	<2	25	<35	≤60			-	
		V_{Rk}	[kN]	16,2	16,2	22,9	22,9	24,8	28,6	34,2	34	,2	35,7	38,3			-	
	HDA-P		_ [kN]	1	6		19	,2	•		•	44	1,8	•		66	5,4	
	HDA-PR		_ [KIN]	7	,9		10),2				2:	L,4				-	

a) HDA M20: 電気亜鉛めっきのみ

平均耐力 耐震認定 C1 の場合

アンカー	サイズ			M	10		M	12				М	16				M2	(0 ^a)	
引張	HDA-P, HDA	A-T	_[kN]	41	.,5		5	8				10	8,7				16	54	
$N_{Rk,seis}$	HDA-PR, HD	A-TR	—[KIV]	41	.,5		5	8				10	8,7				-	-	
		t _{fix,min}	_[mm]	10≤	15≤	10≤	15	5≤	20≤	15≤	20≤	25	5≤ 30)≤	35≤	20≤	25≤	40≤	55≤
	HDA-T	t _{fix,max}	- [!!!!!]	<15	≤20	<15	i <	20	≤50	<20	<25	<3	30 <	35	≤60	<25	<40	<55	≤100
		V_{Rk}	[kN]	65	70	80	8	0	100	140	140	15	55 17	'0	190	205	205	235	250
せん断		t _{fix,min}	-[mm]	10≤	15≤	10≤	15≤	20≤	30≤	15≤	20)≤	25≤	[1]	35≤		-	-	
$V_{Rk,seis}$	HDA-TR	t _{fix,max}	_[]	<15	≤20	<15	<20	<30	≤50	<20	<2	25	<35	≤	≤60		-	-	
		$V_{Rk} \\$	[kN]	35,5	35,5	43,5	43,5	47	54,5	76	70	5	79	:	85		-	-	
	HDA-P		_ [kN]	2	0		2	2			,	3	30	•			6	2	
	HDA-PR		[KIV]	10),5		11	.,5				1	L7				31	,5	

a) HDA M20: 電気亜鉛めっきのみ

設計荷重 耐震認定 C1 の場合

アンカー	サイズ			M	10		M	12				M1	6			M2	(0 a)	
引張	HDA-P, HDA	A-T		27	7,7		38	3,7				72,	5			10	9,4	
$N_{Rd,seis}$	HDA-PR, HD	A-TR	-[kN]	27	7,7		38	3,7				72,	5			-	-	
		t _{fix,min}	_[mm]		15≤	10≤	1.	5≤	20≤	15≤	20≤	25≤	30≤	35≤	20≤	25≤	40≤	55≤
	HDA-T	t _{fix,max}	_[!!!!!!]	<15	≤20	<15	5 <	20	≤50	<20	<25	<30	<35	≤60	<25	<40	<55	≤100
		V_{Rk}	[kN]	43,3	,3 46,7 5		3 53	3,3	66,7	93,3	93,3	103,3	3 113,3	126, 7	136,7	136,7	156,7	166,7
せん断		t _{fix,min}	-[mm]	10≤	15≤	10≤	15≤	20≤	30≤	15≤	20)≤	25≤	35≤		-	_	
$V_{Rd,seis}$	HDA-TR	t _{fix,max}	_[,,,,,,	<15	15 ≤20 <		<20	<30	≤50	<20	<2	25	<35	≤60		-	-	
		V_{Rk}	[kN]	26,7	26,7	32,7	32,7	35,3	41	57,1	. 57	,1	59,4	63,9		-	-	
	HDA-P		_ [kN]	17	17,6		2	4	•		•	49,	5			73	3,6	
	HDA-PR		[KIV]	8	,6		12	2,8				23,	7			-	-	

a) HDA M20: 電気亜鉛めっきのみ

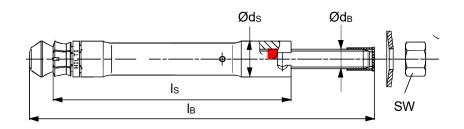
材料

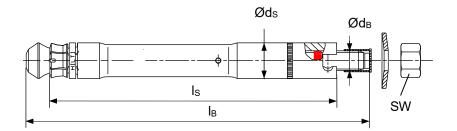
機械的特性

アンカーサイズ		н	DA-P(F)	, HDA-T	(F)	HDA	-PR, HDA	A-TR
772-917		M10	M12	M16	M20 ^{a)}	M10	M12	M16
アンカーボルト								
引張強度 f _{uk}	– [N/mm²]	800	800	800	800	800	800	800
降伏点強度 fyk	— [IN/IIIII1-]	640	640	640	640	600	600	600
応力断面積 As	[mm²]	58,0	84,3	157	245	58,0	84,3	157
断面係数 Wel	[mm³]	62,3	109,2	277,5	540,9	62,3	109,2	277,5
スリーブ無し曲げ抵抗 M ⁰ _{Rk,s} b)	[Nm]	60	105	266	519	60	105	266
アンカースリーブ								
引張強度 fuk	_ [N/mm²] .	850	850	700	550	850	850	700
降伏点強度 fyk	[14/111111]	600	600	600	450	600	600	600

- a) HDA M20: 電気亜鉛めっき 5µm タイプのみ
- b) HDA の許容曲げモーメントは $M_{rec} = M_{Rd,s} / \gamma_F = M_{Rk,s} / (\gamma_{Ms}. \gamma_F) = = (1,2. W_{el}. f_{uk}) / (\gamma_{Ms}. \gamma_F)$ から算出できます。 ただし、強度区分 8.8 ボルトに対する部分安全係数は $\gamma_{MS} = 1,25$ 、A4-80 ボルトは 1,33 とし、荷重のかかった時の部分安全係数は $\gamma_{F} = 1,4$ とします。HDA-T/TR/TF の場合には、スリーブの曲げ抵抗は影響せず、ボルトの抵抗のみ考慮されます。

材料品質


部材	材質
HDA-P / HDA-T	
スリーブ:	タングステンカーバイドチップをろう付けした切削加工鋼、電気亜鉛めっき 5 µm 以上
ボルト M10 - M16:	冷間圧造, 強度区分 8.8, 電気亜鉛めっき 5 µm 以上
ボルト M20:	コーン部切削加工, 強度区分 8.8, 電気亜鉛めっき 5 µm 以上
ワッシャー M10-M16:	スプリングワッシャー、電気亜鉛メッキ
ワッシャー M20:	ワッシャー、電気亜鉛メッキ
センタリングワッシャー	切削加工鋼
HDA-PR / HDA-TR	
スリーブ:	タングステンカーバイドチップをろう付けした切削加工ステンレス鋼
ボルト M10 - M16:	コーンおよび軸部: 切削加工ステンレス鋼
ワッシャー	スプリングワッシャー、ステンレス鋼
センタリングワッシャー	切削加工鋼
HDA-PF / HDA-TF	
スリーブ	タングステンカーバイドチップをろう付けした切削加工鋼、シェラダイジング
ボルト M10-M16:	冷間圧造、強度区分8.8、シェラダイジング

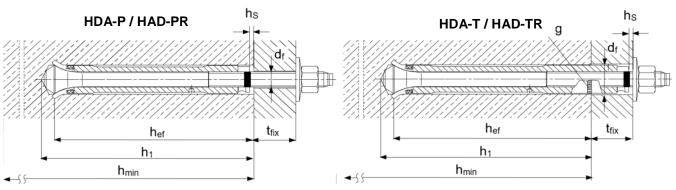


HDAの寸法

1107(0)3/2			HDA-	P / HDA-	PR / HDA	A-T / HDA	-TR / HD	A-PF / H	DA-TF			
アンカーサイズ			M10 M12			M	16	М	20			
			x100/20	x125/30	x125/50	x190/40	x190/60	x250/50	x250/100			
記号			I	L	N	R	S	V	Х			
アンカー全長	Ι _Β	[mm]	150	190	210	275	295	360	410			
ボルト径 d _B [mm]			10	1	2	1	6	2	20			
スリーブ全長												
HDA-P	Is	[mm]	100	125	125	190	190	250	250			
HDA-T	Is	[mm]	120	155	175	230	250	300	350			
スリーブ部最大径	ds	[mm]	19	2	1	2	9	3	35			
ワッシャー径	d _w	[mm]	27,5	33	3,5	45	5,5	50				
二面幅	S_w	[mm]	17	1	9	2	4	30				

HDA-P / HDA-PR

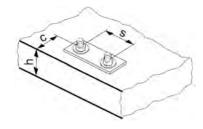
HDA-T / HDA-TR



施工留付け

HDA施工詳細情報

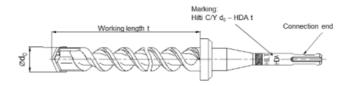
H D A 加上詳細情報			HDA-P / HDA-PR / HDA-T / HDA-TR										
アンカーサイズ			M10	M	12	M:	16	M	20				
			x100/20	x125/30	x125/50	x190/40	x190/60	x250/50	x250/100				
記号			I	L	N	R	S	V	х				
穿孔径 (ビットの呼び径)	d ₀	[mm]	20	20 22 30		0	37						
*1	$d_{\text{cut,min}}$	[mm]	(20,10)	(22	,10)	(30)	,10)	(37	',15)				
* 1	d _{cut,max}	[mm]	(20,55)	(22	,55)	(30)	,55)	(37	',70)				
穿孔長 a)	h ₁ ≥	[mm]	107	13	33	20)3	2	66				
有効埋込み長	h _{ef}	[mm]	100	12	25	19	90	2	50				
スリーブの はめ合	h _{s,min}	[mm]	2	2	2	2	2		2				
い長さ	h _{s,max}	[mm]	6	7	7	8	3	8					
締付けトルク	T _{inst}	[Nm]	50	8	0	12	20	3	00				
For HDA-P/-PR/-PF													
取付物の下穴径	d_{f}	[mm]	12	1	4	1	8	2	22				
最小母材厚	h_{min}	[mm]	180	20	00	27	70	3	50				
取付物厚	$t_{\text{fix,min}}$	[mm]	0	()	()	0					
אַרוויזיוטויבי	$t_{\text{fix,max}}$	[mm]	20	30	50	40	60	50	100				
For HDA-T/-TR/-TF													
取付物の下穴径	d_f	[mm]	21	2	3	3	2	4	10				
最小母材厚	h _{min}	[mm]	200-t _{fix}	230-t _{fix}	250-t _{fix}	310-t _{fix}	330-t _{fix}	400-t _{fix}	450-t _{fix}				
最小取付物厚													
引張荷重のみ	$t_{\text{fix,min}}$	[mm]	10	1	0	1	5	20	50				
センタリングワッシャー不使用時の せん断荷重	$t_{\text{fix,min}}$	[mm]	15	15		2	0	25	50				
センタリングワッシャー使用時のせ ん断荷重	t _{fix,min}	[mm]	10	1	0	15		20	-				
最大取付物厚	t _{fix,max}	[mm]	20	30	50	40	60	50	100				


- *1 付録の dcut 説明を参照ください。
- a): 専用ストップドリルビット使用

施工条件

			HD	A-P / HDA	A-PR / HD	A-T / HDA	A-TR		
アンカーサイズ		M10	Mı	L2	M:	16	М	120	
		x100/20	x125/30	x125/50	x190/40	x190/60	x250/50	x250/100	
最小アンカーピッチ	s _{min} [mm]	100	125		190		2	50	
最小へりあき寸法	c _{min} [mm]	80	10	00	15	50	200		
引き剥がしによる 基準アンカーピッチ	s _{cr,sp} [mm]	300	375		57	70	750		
引き剥がしによる 基準へりあき寸法	c _{cr,sp} [mm]	150	19	90	285		375		
コンクリートコーン 状破壊による 基準アンカーピッチ	s _{cr,N} [mm]	300	37	75	570		750		
コンクリートコーン 状破壊による 基準へりあき寸法	c _{cr,N} [mm]	150	19	00	28	35	3	75	

基準アンカーピッチ(基準へりあき寸法)より狭いアンカーピッチ(へりあき寸法)の場合、設計荷重は低減して下さい。 引き剥がしによる基準アンカーピッチや基準へりあき寸法はひび割れのないコンクリートにのみ適用されます。ひび割れのある コンクリートに関しては、コンクリートコーン状破壊による基準アンカーピッチと基準へりあき寸法でのみ決定されます。


(詳しくは弊社担当者までお問い合わせください。)

穿孔用ストップドリルビット

ストップドリルビットは正確な穿孔深さを確保するために必要となります。

施工の際には、指定の工具(ハンマードリルやセッティングツール)が必要となります。

ストップドリルビット適合表

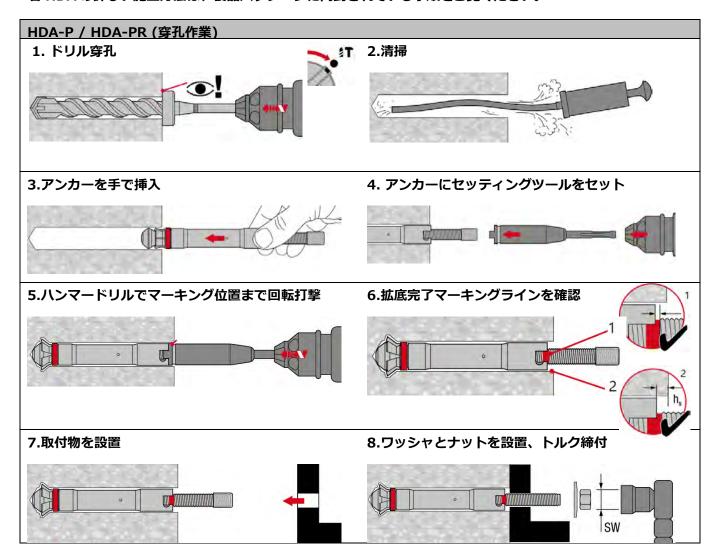
ストップトリルヒット適合表				
75.4	TE-C (SDS plus)	TE-Y (SDS max)	ビット有効長	穿孔径
アンカー	ストップドリルビット	ストップドリルビット	t [mm]	(ビット呼び径)
				d ₀ [mm]
HDA-P/ PF/ PR M10x100/20	TE-C-HDA-B	TE-Y-HDA-B 20x100	107	20
11DA-F/ FI / FK M10X100/20	20×100	1E-1-11DA-D 20x100	107	20
HDA-T/ TF/ TR	TE-C-HDA-B	TE-Y-HDA-B 20x120	127	20
M10x100/20	20x120	1L-1-11DA-D 20x120	127	20
HDA-P/ PF/ PR M12x125/30	TE-C HDA-B	TE-Y HDA-B 22x125	133	22
HDA-P/ PF/ PR M12x125/50	22x125	TE-T HDA-D ZZXIZS	133	22
HDA-T/ TF/ TR	TE-C HDA-B	TE-Y HDA-B 22x155	163	22
M12x125/30	22x155	TE-1 HDA-D 22X133	103	22
HDA-T/ TF/ TR	TE-C HDA-B	TE-Y HDA-B 22x175	183	22
M12x125/50	22x175	TE-1 HDA-D 22X173	103	22
HDA-P/ PF/ PR				
M16 x190/40		TE-Y HDA-B 30x190	203	30
HDA-P/ PF/ PR		IE-I NDA-D SUX190	203	30
M16 x190/60				
HDA-T/ TF/ TR		TE-Y HDA-B 30x230	243	30
M16x190/40		TE-T HDA-D 30X230	243	30
HDA-T/ TF/ TR		TE-Y HDA-B 30x250	263	30
M16x190/60		TE-T HDA-D 30X230	203	30
HDA-P M20 x250/50		TE-Y HDA-B 37x250	266	27
HDA-P M20 x250/100		1E-1 NDA-D 3/XZ3U	266	37
HDA-T M20x250/50		TE-Y HDA-B 37x300	316	37
HDA-T M20x250/100		TE-Y HDA-B 37x350	366	37

アンカー											セッティングツール
	TE 24 ^{a)} TE 25 ^{a)}	TE 30-A36	TE 35	TE 40 TE 40 AVR	TE 56 TE 56-ATC	TE 60 TE 60-ATC	TE 70 TE 70-ATC	TE 75	TE 76 TE 76-ATC	TE 80-ATC TE 80-ATC AVR	
HDA-P/T											TF-C-HDA-ST 20 M10
											TF-Y-HDA-ST 20 M10
HDA-P/T											TF-C-HDA-ST 22 M12
,											TF-Y-HDA-ST 22 M12
HDA-P/T							•		•	•	TE-Y-HDA-ST 30 M16
HDA-P/T							-		-	-	TE-Y-HDA-ST 37 M20

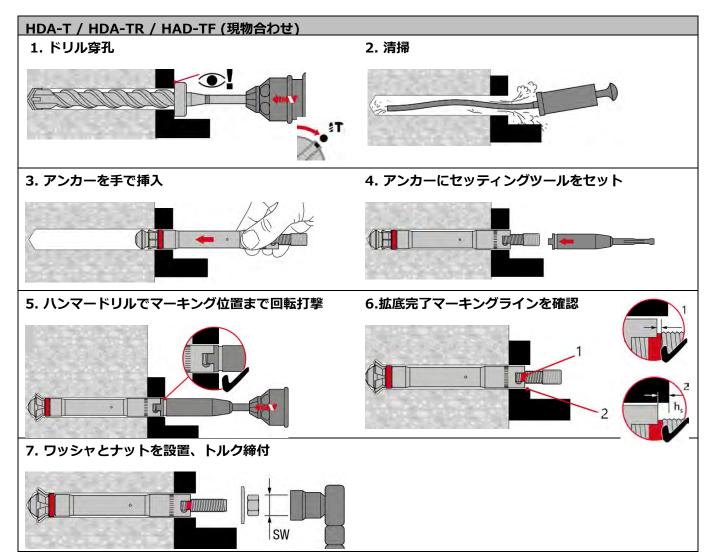
a) 1速

アンカー	TE 24 ^{a)}	TE 25 ^{a)}	TE 30-A36	TE 35	TE 40	TE 40 AVR	TE 56	TE 56-ATC	TE 60	ТЕ 60-АТС	TE 70	те 70-АТС	TE 75	TE 76	те 76-АТС	TE 80-ATC	TE 80-ATC AVR	セッティングツール
HDA-PR/TR M10x100/20	ı																	TE-C-HDA-ST 20 M10
TIBRATIQ TRE TITOXIOO, 20																		TE-Y-HDA-ST 20 M10
HDA-PR/TR M12x125/30	ı																	TE-C-HDA-ST 22 M12
HDA-PR/TR M12x125/50																		TE-Y-HDA-ST 22 M12
HDA-PR/TR M16x190/40 HDA-PR/TR M16x190/60													•	ı				TE-Y-HDA-ST 30 M16

a) 1速


アンカー	TE 24 a) TE 25 a)	30-	TE 35	TE 40 TE 40 AVR		TE 70 TE 70-ATC	TE 75	TE 76 TE 76-ATC		Setting tool
HDA-PF/TF M10x100/20		•	•	•			•			TE-C-HDA-ST 20 M10
HDA-PF/TF M12x125/30 HDA-PF/TF M12x125/50				•						TE-C-HDA-ST 22 M12
HDA-PF/TF M16x190/40 HDA-PF/TF M16x190/60						•	•	•	•	TE-Y-HDA-ST 30 M16

a) 1速



施工手順

*各 HDA の詳しい施工方法は、製品パッケージに同封されている手順をご覧ください。

HSC セルフアンダーカットアンカー

アンカー 特長 - 小さいへりあき、および、アンカ HSC-A ーピッチ **HSC-AR** - 埋込み長が小さく、厚みのないコ (M8-M12) ンクリートブロックなどに適する - 欧州 ETA C2 耐震認証 - ひび割れを想定するコンクリート に対応 HSC-I - セルフカッティング アンダーカ HSC-IR ットアンカー (M6-M12)- 用途によりボルト仕様対応 - 屋外対応のステンレス鋼

母材 荷重条件 ひび割れを想定しない ひび割れを想定した 耐震認証 静的 / 準静的 耐火 衝擊 コンクリート コンクリート ETA-C2 施工条件 その他 Α4 316 ハンマードリル 欧州技術認証 PROFIS Anchor CE 適合製品 耐食性

認証 / 証明書

穿孔

種類	機関 / 研究所	No. / date of issue
ETA 欧州技術認証 ^{a)}	CSTB, Marne-la-Vallèe	ETA-02/0027 / 2018-07-04
耐火試験報告書 a)	CSTB, Marne-la-Vallèe	ETA-02/0027 / 2018-07-04
民間防衛施設における耐衝撃性	Federal Office for Civil Protection, Bern	BZS D 06-601 / 2006-07-10

ETA

設計ソフト対応

a) 本項に記載のすべてのデータは ETA-02/0027:2018-07-04 発行に準拠。

静的な耐力

本項における全てのデータは下記条件による。 - 所定のアンカー施工 (施工条件・手順参照) - へりあきやアンカーピッチの影響がない。

- 鋼材破壊
- 最小母材厚
- コンクリート圧縮強度 C20/25, f_{ck,cube} = 25 N/mm² (JIS 規格 F_c≒21N/mm² 相当)

HSC-A(R)

有効埋込み長 HSC-A (R)

アンカーサイズ	M8	M8	M10	M12		
有効埋込み長	h_{ef}	[mm]	40	50	40	60

基準耐力 HSC-A(R)

アンカーサイズ			M8 x 40	M8 x 50	M10 x 40	M12 x 60				
ひび割れを想定しないコンクリート										
引張 N _{Rk}	HSC-A, HSC-AR	[kN]	12,8	17,8	12,8	23,4				
せん断 V _{Rk}	HSC-A	[kN]	14,6	14,6	23,2	<i>33,7</i>				
U COMI V _{Rk}	HSC-AR	[KIN]	12,8	12,8	20,3	29,5				
ひび割れを想定したコ	ンクリート									
引張 N _{Rk}	HSC-A, HSC-AR	[kN]	9,1	12,7	9,1	16,7				
せん断 V _{Rk}	HSC-A	[kN]	14,6	14,6	18,2	33,5				
ent v _{Rk}	HSC-AR	[KIN]	12,8	12,8	18,2	29,5				

設計耐力 HSC-A (R)

アンカーサイズ			M8 x 40	M8 x 50	M10 x 40	M12 x 60				
ひび割れを想定しないコンクリート										
引張 N _{Rd}	HSC-A, HSC-AR	[kN]	8,5	11,9	8,5	15,6				
せん断 V _{Rd}	HSC-A	[kN]	11,7	11,7	17,0	27,0				
でかり V _{Rd}	HSC-AR	[KIN]	8,2	8,2	13,0	18,9				
ひび割れを想定したコング	フリート									
引張 N _{Rd}	HSC-A, HSC-AR	[kN]	6,1	8,5	6,1	11,2				
せん断 V _{Rd}	HSC-A	[kN]	11,7	11,7	12,1	22,3				
でんM V _{Rd}	HSC-AR	[KIN]	8,2	8,2	12,1	18,9				

許容安全荷重 a) HSC-A(R)

計分女工何里 ПЭC-A	(N)								
アンカーサイズ			M8 x 40	M8 x 50	M10 x 40	M12 x 60			
ひび割れを想定しないコンクリート									
引張 N _{Rec}	HSC-A, HSC-AR	[kN]	6,1	8,5	6,1	11,2			
せん断 V _{Rec}	HSC-A	[kN]	8,3	8,3	12,1	19,3			
でが V _{Rec}	HSC-AR	[KIN]	5,9	5,9	9,3	13,5			
ひび割れを想定したコンク	クリート								
引張 N _{Rec}	HSC-A, HSC-AR	[kN]	4,3	6,1	4,3	8,0			
せん断 V _{Rec}	HSC-A	[kN]	8,3	8,3	8,7	15,9			
G / O性/I V Rec	HSC-AR	[KIN]	5,9	5,9	8,7	13,5			

a) 部分安全係数は、荷重の種類ごと、国ごとの規定により決められる係数で、ここでは $\gamma=1.4$ を採用している。

HSC-I (R)

有効埋込み長 HSC-I (R)

アンカーサイズ		М6	M8	M10	M10	M12
有効埋込み長	h _{ef} [mm]	40	40	50	60	60

基準耐力 HSC-I (R)

アンカーサイス	ズ		M6 x 40	M8 x 40	M10 x 50	M10 x 60	M12 x 60		
ひび割れを想定しないコンクリート									
引張 N _{Rk}	HSC-I, HSC-IR	[kN]	12,8	12,8	17,8	23,4	23,4		
せん断 V _{Rk}	HSC-I	[kN]	8,0	12,2	15,2	15,2	18,2		
	HSC-IR	[KIN]	7,0	10,7	13,3	13,3	16,0		
ひび割れを想定	定したコンクリート								
引張 N _{Rk}	HSC-I, HSC-IR	[kN]	9,1	9,1	12,7	12,7	16,7		
せん断 V _{Rk}	HSC-I	[kN]	8,0	12,2	15,2	<i>15,2</i>	18,2		
	HSC-IR	[KIN]	7,0	10,7	13,3	13,3	16,0		

設計耐力 HSC-I (R)

アンカーサイス	ズ		M6 x 40	M8 x 40	M10 x 50	M10 x 60	M12 x 60		
ひび割れを想定しないコンクリート									
引張 N _{Rd}	HSC-I	[kN]	8,5	8,5	11,9	15,6	15,6		
	HSC-IR	[KIN]	7,5	8,5	11,9	14,2	15,6		
せん断 V _{Rd}	HSC-I	[kN]	6,4	9,8	12,2	12,2	14,6		
でから V _{Rd}	HSC-IR	[KIN]	4,5	6,9	8,5	8,5	10,3		
ひび割れを想定	定したコンクリート								
引張 N _{Rd}	HSC-I, HSC-IR	[kN]	6,1	6,1	8,5	11,2	11,2		
せん断 V _{Rd}	HSC-I	[kN]	6,4	9,8	12,2	12,2	14,6		
	HSC-IR	[KIN]	4,5	6,9	8,5	8,5	10,3		

許容安全荷重 a) HSC-I (R)

アンカーサイズ	•		M6 x 40	M8 x 40	M10 x 50	M10 x 60	M12 x 60		
ひび割れを想定しないコンクリート									
引張 N _{Rec}	HSC-I	[kN]	6,1	6,1	8,5	11,2	11,2		
	HSC-IR	[KIN]	5,4	6,1	8,5	10,1	11,2		
せん断 V _{Rec}	HSC-I	[kN]	4,6	7,0	8,7	8,7	10,4		
	HSC-IR	[KIN]	3,2	4,9	6,1	6,1	7,3		
ひび割れを想定	じたコンクリート								
引張 N _{Rec}	HSC-I, HSC-IR	[kN]	4,3	4,3	6,1	8,0	8,0		
せん断 V _{Rec}	HSC-I	[kN]	4,6	7,0	8,7	8,7	10,4		
	HSC-IR	[KIN]	3,2	4,9	6,1	6,1	7,3		

a) 部分安全係数は、荷重の種類ごと、国ごとの規定により決められる係数で、ここでは $\gamma = 1.4$ を採用している。

地震荷重 (アンカー単体対象)

本項における全てのデータは下記条件による。

- 所定のアンカー施工 (施工条件・手順参照)- へりあきやアンカーピッチの影響がない
- 鋼材破壊
- ひび割れを想定したコンクリート
- 最小母材厚
- コンクリート圧縮強度 C 20/25, $f_{ck,cube} = 25 \text{ N/mm}^2$ (JIS 規格 $F_c \stackrel{.}{=} 21 \text{N/mm}^2$ 相当) $a_{gap} = 1,0$ (ヒルティフィリングセット使用時)

基準耐力 HSC-A 耐震認証 C2 の場合

アンカーサ	イズ		M8 x 40	M8 x 50	M10 x 40	
引張 N _{Rk, seis}	HSC-A	[kN]	2,4	2,4	4,5	
せん断 V _{Rk Seis}	HSC-A	[kN]	12,4	12,4	15,5	

設計耐力 HSC-A 耐震認証 C2 の場合

アンカーサ	イズ		M8 x 40	M8 x 50	M10 x 40
引張 N _{Rd, seis}	HSC-A	[kN]	1,6	1,6	3,0
せん断 V _{Rd,seis}	HSC-A	[kN]	9,9	9,9	10,3

許容安全荷重 HSC-A 耐震認証 C2 の場合

アンカーサ	イズ		M8 x 40	M8 x 50	M10 x 40	
引張 N _{Rd, seis}	HSC-A	[kN]	1,1	1,1	2,1	
せん断 V _{Rd,seis}	HSC-A	[kN]	7,1	7,1	7,4	

耐火

本項における全てのデータは下記条件による。

- 所定のアンカー施工 (施工条件・手順参照)
- へりあきやアンカーピッチの影響がない
- 鋼材破壊
- 最小母材厚
- コンクリート圧縮強度 C 20/25, f_{ck.cube}=25 N/mm² (JIS 規格 F_c≒21N/mm²相当)

HSC-A(R)

有効埋込み長 HSC-A (R)

アンカーサイズ			М8	М8	M10	M12
有効埋込み長	h _{ef}	[mm]	40	50	40	60

基準/設計 1 耐力 ひび割れを想定しないコンクリートおよびひび割れを想定したコンクリート

アンカー	-サイズ		M8 x 40	M8 x 50	M10 x 40	M12 x 60
30 分耐	火 ²					
引張	HSC-A	— [kN]	0,4	0,4	0,9	1,7
$N_{Rk,fi}$	HSC-AR	[KIN]	0,7	0,7	1,5	2,5
せん断	HSC-A	[LN]	0,4	0,4	0,9	1,7
$V_{Rk,fi}$	HSC-AR	— [kN]	0,7	0,7	1,5	2,5
120 分配	耐火 ²					
引張	HSC-A	[kN]	0,2	0,2	0,5	0,8
$N_{Rk,fi}$	HSC-AR	[KIN]	0,4	0,4	0,8	1,3
せん断	HSC-A	[LN]	0,2	0,2	0,5	0,8
$V_{Rk,fi}$	HSC-AR	— [kN]	0,4	0,4	0,8	1,3

¹⁾ 安全係数 γ=1.0

HSC-I(R)

有効埋込み長 HSC-I (R)

アンカーサイズ			М6	M8	M10	M10	M12
有効埋込み長	h_{ef}	[mm]	40	40	50	60	60

基準/設計 ¹ 耐力 ひび割れを想定しないコンクリートおよびひび割れを想定したコンクリート

アンカー	-サイズ		M6 x 40	M8 x 40	M10 x 50	M10 x 60	M12 x 60
30 分耐	火 ²						
引張	HSC-I	[kN]	0,2	0,4	0,9	0,4	1,7
$N_{Rk,fi}$	HSC-IR	[KIN]	0,2	0,7	1,5	0,7	2,5
せん断	HSC-I	[kN]	0,2	0,4	0,9	0,4	1,7
$V_{Rk,fi}$	/ _{Rk,fi} HSC-IR	[KIN]	0,2	0,7	1,5	0,7	2,5
120 分配	耐火 ²						
引張	HSC-I	[kN]	0,1	0,2	0,5	0,2	0,8
$N_{Rk,fi}$	HSC-IR	[KIN]	0,1	0,4	0,8	0,4	1,3
せん断	HSC-I	[kN]	0,1	0,2	0,5	0,2	0,8
$V_{Rk,fi}$	HSC-IR	[KIN]	0,1	0,4	0,8	0,4	1,3

安全係数 γ=1.0

^{2) 30}分、120分の加熱試験後、アンカー性能検証による値

^{2) 30}分、120分の加熱試験後、アンカー性能検証による値

材料

機械的特性 HSC-A (R)

アンカーサイズ		_		M8 x 40	M8 x 50	M10 x 40	M12 x 60
公称引張強度	f	HSC-A	- [N/mm2]	800	800	800	800
公外が改成法	f_{uk}	HSC-AR	- [N/mm²] -	700	700	700	700
降伏強度	f	HSC-A	- [N/mm²]	640	640	640	640
)	f_{yk}	HSC-AR		450	450	450	450
応力断面 ボルト用	$A_{s,A}$	HSC-A HSC-AR	[mm²]	36,6	36,6	58,0	84,3
断面係数	W	HSC-A HSC-AR	[mm³]	31,2	31,2	62,3	109,2
曲げ抵抗 スリーブ無	М	HSC-A	- [Nm]	24	24	48	84
	I*I _{Rd,s}	HSC-AR		16,7	16,7	33,3	59,0

機械的特性 HSC-I (R)

100 T 10 T 10 T 10	-,							
アンカーサイズ				M6 x 40	M8 x 40	M10 x 50	M10 x 60	M12 x 60
公称引張強度			N/mm	800	800	800	800	800
公外で10弦送	f_{uk}	HSC-IR	2]	700	700	700	700	700
降伏強度	f	HSC-I	[N/mm	640	640	640	640	640
件1人强反	f_{yk}	HSC-IR	2]	355	355	350	350	340
応力断面 内ねじ用	$A_{s,I}$	HSC-I HSC-IR	[mm²]	22,0	28,3	34,6	34,6	40,8
応力断面 外ねじ用	$A_{s,A}$	HSC-I HSC-IR	[mm²]	20,1	36,6	58,0	58,0	84,3
断面係数	W	HSC-I HSC-IR	[mm³]	12,7	31,2	62,3	62,3	109,2
曲げ抵抗 スリーブ無	# М .	HSC-I	- [Nm]	9,6	24	48	48	84
曲の私が、 人ワーフ#	₩ I*I _{Rd,s}	HSC-IR	_ [ווווו]	7,1	16,7	33,3	33,3	59,0

材質

種類		材料					
亜鉛めっる	5 鋼						
	内ねじコーンボルト	・炭素鋼 強度区分 8.8、亜鉛めっき 5 μm 以上					
HSC-A	Cone bolt with internal thread						
HSC-I	拡張スリーブ	亜紗かっき F um 以上					
	ワッシャー 六角ナット	- 亜鉛めっき 5 μm 以上 					
	六角ナット	等級 8					
ステンレス	ス鋼						
	Cone bolt with internal thread	- A4-70 ステンレス鋼 1.4401, 1.4571 EN 10088-1:2014					
HSC-AR	Cone bolt with internal thread	A4-70 入 プラング					
HSC-IR	拡張スリーブ	 ステンレス鋼 1.4401, 1.4571 EN 10088-1:2014					
	ワッシャー	「					
	六角ナット	A4-70 ステンレス鋼 1.4401, 1.4571 EN 10088-1:2014					

アンカー寸法 HSC-A (R)

アンカーサイズ		M8 x 40	M8 x 50	M10 x 40	M12 x 60
コーンボルト径	b [mm]	13,5	13,5	15,5	17,5
拡張スリーブ長	l _s [mm]	40,8	50,8	40,8	60,8
拡張スリーブ径	d [mm]	13,5	13,5	15,5	17,5
ワッシャー径	e [mm]	16	16	20	24

アンカー寸法 HSC-I (R)

アンカーサイズ		M6 x 40	M8 x 40	M10 x 50	M10 x 60	M12 x 60
コーンボルト長	l _b [mm]	43,8	43,8	54,8	64,8	64,8
コーンボルト径	b [mm]	13,5	13,5	15,5	13,5	17,5
拡張スリーブ長	l _s [mm]	40,8	40,8	50,8	50,8	60,8
拡張スリーブ径	d [mm]	13,5	15,5	17,5	17,5	19,5

施工仕様

施工詳細 HSC-A(R)

#6—#14H 110 0 71 (11)					
アンカーサイズ		M8 x 40	M8 x 50	M10 x 40	M12 x 60
有効埋込み長	h _{ef} [mm]	40	50	40	60
穿孔径 (ビットの呼び径)	d_0 [mm]	14	14	16	18
*1	d _{cut} [mm]	(14,5)	(14,5)	(16,5)	(18,5)
最大取付物厚	t _{fix} [mm]	15	15	20	20
穿孔径	h ₁ [mm]	46	56	46,5	68
取付物の許容下穴径	d _f [mm]	9	9	12	14
締付トルク	T _{inst} [Nm]	10	10	20	30
ナット二面幅	SW [mm]	13	13	17	19

施工詳細 HSC-I (R)

アンカーサイズ			M6 x 40	M8 x 40	M10 x 50	M10 x 60	M12 x 60
有効埋込み長	h _{ef}	[mm]	40	40	50	60	60
穿孔径 (ビットの呼び径)	d_0	[mm]	14	16	18	18	20
*1	d_{cut}	[mm]	(14,5)	(16,5)	(18,5)	18,5	20,5
穿孔長	$h_1 =$	[mm]	46	46,5	56	68	68,5
取付物の許容下穴径	$d_f \leq$	[mm]	7	9	12	12	14
締付トルク	T _{inst}	[Nm]	10	10	20	30	30
ナット二面幅	SW	[mm]	10	13	17	17	19
ねじ込み長	min s	mm]	6	8	10	10	12
14000万 支	max s	mm]	16	22	28	28	30

^{*1} 付録の d_{cut} 説明をご参照ください。

標準施工工具 HSC-A (R)

アンカーサイズ		M8 x 40	M8 x 50	M10 x 40	M12 x 60
ロータリーハンマードリル		E 7-C; TE 7-A; TE 16; TE	E 16-C; TE 16-M; TE 25; TE 35	TE 7-C; TE 7-A; TE 25; TE 35	TE 16; TE 16-C; TE 16- M; TE 25; TE 30; TE 35; TE 40; TE 40-AVR
専用ドリルビット	TE-C-HSC-B	14x40	14x50	16x40	18x60
セッティングツール	TE-C-HSC-MW	14	14	16	18

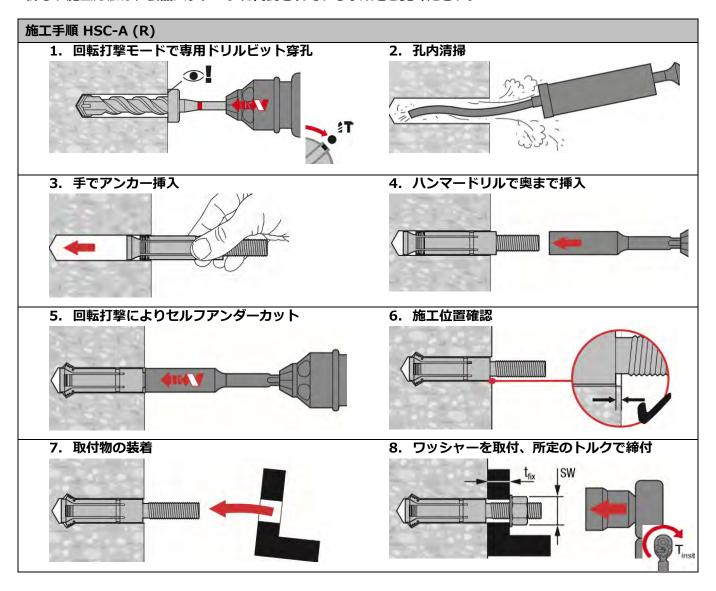
標準施工工具 HSC-I (R)

アンカーサイズ		M6 x 40	M8 x 40	M10 x 50	M10 x 60	M12 x 60
ロータリーハンマードリル		TE 7-C; TE 7		16-C; TE 16-l 0; 35		TE 16; TE 16-C; TE 16- M; TE 25; TE 30; TE 35;
専用ドリルビット	TE-C-HSC-B	14x40	16x40	18x50	18x60	20x60
セッティングツール	TE-C-HSC-MW	14	16	18	18	20
インサートツール	TE-C-HSC-EW	14	16	18	18	20

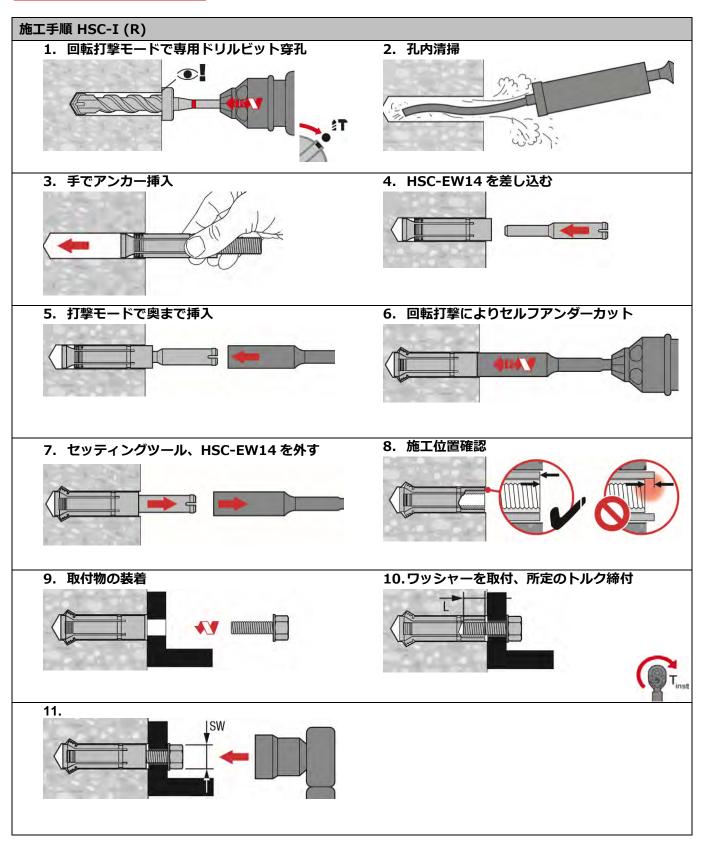
施工条件 HSC-A (R)

加工条件 HSC-A (R)						
アンカーサイズ			M8 x 40	M8 x 50	M10 x 40	M12 x 60
有効埋込み長	h_{ef}	[mm]	40	40	50	60
最小母材厚	h _{min} ≥	[mm]	100	100	100	130
最小アンカーピッチ	s _{min} ≥	[mm]	40	40	50	60
最小へりあき	c _{min} ≥	[mm]	40	40	50	60
割裂破壊を考慮した 基準アンカーピッチ	S _{cr,sp}	[mm]	130	120	170	180
割裂破壊を考慮した 基準へりあき	C _{cr,sp}	[mm]	65	60	85	90
コンクリートコーン破壊を考慮した 基準アンカーピッチ	S _{cr,N}	[mm]	120	120	150	180
コンクリートコーン破壊を考慮した 基準へりあき	C _{cr,N}	[mm]	60	60	75	90

施工条件 HSC-I (R)


//ETXII IISC I (N)							
アンカーサイズ Anchor size			M6 x 40	M8 x 40	M10 x 50	M10 x 60	M12 x 60
有効埋込み長	h _{ef}	[mm]	40	40	50	60	60
最小母材厚	h _{min} ≥	[mm]	100	100	100	100	130
最小アンカーピッチ	s _{min} ≥	[mm]	40	40	40	50	60
最小へりあき	c _{min} ≥	[mm]	40	40	50	60	60
割裂破壊を考慮した 基準アンカーピッチ	S _{cr,sp}	[mm]	130	120	170	180	180
割裂破壊を考慮した 基準へりあき	C _{cr,sp}	[mm]	65	60	85	90	90
コンクリートコーン破壊を考慮した 基準アンカーピッチ	S _{cr,N}	[mm]	120	120	150	180	180
コンクリートコーン破壊を考慮した 基準へりあき	C _{cr,N}	[mm]	60	60	75	90	90

ETAG0001, Annex C により、基準アンカーピッチ・へりあきより、小さいアンカーピッチ・へりあきの場合は、荷重を低減すること。割裂破壊による基準アンカーピッチ・基準へりあきはひび割れを想定しないコンクリートのみに適用され、ひび割れを想定するコンクリートではコンクリートコーン破壊を考慮した基準アンカーピッチ・基準へりあきに支配される。

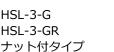


施工手順

*詳しい施工方法は、製品パッケージに同封されている手順をご覧ください。

HSL-3 / HSL-3-R コーンナット式締付方式金属系アンカー

アンカー



HSL-3-G HSL-3-GR

名称・サイズ

から C50/60 のコンクリートに も適する

- **ひび割れを想定**した C20/25

特長

- 全ての動的荷重:耐震認定 C1/C2a)、衝擊荷重、疲労荷重

- ハンマードリル、ダイヤモンド

コア穿孔共に**同じ性能**として施

(M8-M24)HSL-3-B 安全キャップ付タイプ

工が可能 - 高性能拡張機能とせん断スリー

ブにより**高いせん断性能**を持つ

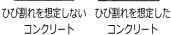
HSL-3-SH ソケットタイプ (M8-M12)

(M12-M24)

- HSL-3-B で**自動トルク管理**

- プロジェクトの使用条件により 長さのカスタマイズが可能

- 仮設留付けや改修など、容易に 撤去が可能



HSL-3-SK HSL-3-SKR 皿頭タイプ (M8-M12)

a) HSL-3 炭素鋼のみ適用

母材

荷重条件

静的/準静的

その他

ETA-C1, C2

疲労荷重

衝擊荷重

耐火

施工条件

ハンマードリル 穿孔

ダイヤモンドコア 穿孔

選択可能な 埋込み深さ

欧州技術認証 **ETA**

CE 適合製品

PROFIS Anchor 設計ソフト対応

耐腐食

認証/証明書

種類	機関 / 研究所	No. / 発行年月日
ETA 欧州技術認証 ^{a)}	CSTB, Marne-la-Vallèe	ETA-02/0042 / 2017-11-22
耐火試験報告書	CSTB, Marne-la-Vallèe	ETA-02/0042 / 2017-11-22
ICC-ES 報告書(耐震含む) b)c)	ICC evaluation service	ESR 1545 / 2017-01
耐衝擊認証 c)	Civil Protection of Switzerland	BZS D 08-601
耐火性能 ^{c)}	Exova Warringtonfire	WF 327804/A / 2013-07-10
ACI 349-01 原子力適合性 c)	Wollmershauser consulting	WC 11-02 / 2011-09

- a) 本項に記載のすべてのデータは ETA-02/0042 (2017-07-20 発行) に準拠
- b) ICC による技術データ詳細は HNA FTM 参照
- HSL-3 / HSL-3-G / HSL-3-B / HSL-3-SK / HSL-3-SH のみ適用

静的/準静的 荷重(単体アンカー対象)

本項における全てのデータは下記条件による。

- 所定のアンカー施工 (施工条件・手順参照)
- へりあきやアンカーピッチの影響がない
- 鋼材破壊
- 最小母材厚
- コンクリート圧縮強度 C 20/25, f_{ck,cube}=25 N/mm²(JIS 規格 F_c≒21N/mm²相当)
- HSL-3-R、HSL-3-SKR、HSL-3-GR の値はハンマードリル穿孔のみ適用

有効埋込み長 a)

アンカーサイズ				M8			M10			M12	
右効地はみ長りより	[mm]	$h_{ef,1}^{b)}$	h _{ef,2}	h _{ef,3}	h _{ef,1} b)	h _{ef,2}	h _{ef,3}	$h_{ef,1}^{b)}$	h _{ef,2}	h _{ef,3}	
有别连达07天	有効埋込み長 h _{ef} [[mm]	60	80	100	70	90	110	80	105	130
アンカーサイズ				M16			M20			M24	
有効埋込み長 h _{ef} [mm	[mm]	h _{ef,1}	h _{ef,2}	h _{ef,3}	h _{ef,1}	h _{ef,2}	h _{ef,3}	h _{ef,1}	h _{ef,2}	h _{ef,3}	
	[111111]	100	125	150	125	155	185	150	180	210	

- a) HSL-3-SH、HSL-3-SK、HSL-3-SKR のサイズは M8~M12 のみ
- b) HSL-3-SH、HSL-3-SK、HSL-3-SKR は設置方法1でのみ有効

基準耐力

アンカー	- サイズ			M8			M10			M12	
ひび割れ	しを想定しないコンクリー	-ト									
引張	HSL-3 / HSL-3-B HSL-3-G HSL-3-SH / HSL-3-SK ^{a)}	[kN]	23,5	29,3	29,3	29,6	43,1	46,6	36,1	54,3	67,4
N_{Rk}	HSL-3-R / HSL-3-SKR ^{a)} HSL-3-GR		20,0	20,0	20,0	29,6	40,6	40,6	36,1	54,3	59,0
	HSL-3 / HSL-3-B		31,1	31,1	31,1	59,2	60,5	60,5	72,3	89,6	89,6
せん断	HSL-3-G		26,1	26,1	26,1	41,8	41,8	41,8	59,3	59,3	59,3
UMM V _{Rk}	HSL-3-SH / HSL-3-SK ^{a)}	[kN]	31,1	-	-	59,2	-	-	72,3	-	-
* KK	HSL-3-R, HSL-3-SKR a)		44,4	44,4	44,4	59,2	62,7	62,7	72,3	81,4	81,4
	HSL-3-GR		40,3	40,3	40,3	58,9	58,9	58,9	72,3	<i>78,7</i>	<i>78,7</i>
ひび割れ	を想定したコンクリー										
引張	HSL-3 / HSL-3-B HSL-3-G HSL-3-SH / HSL-3-SK ^{a)}	[kN]	12,0	12,0	12,0	16,0	16,0	16,0	25,8	24,0	24,0
N_{Rk}	HSL-3-R / HSL-3-SKR ^{a)} HSL-3-GR	[]	12,0	12,0	12,0	16,0	16,0	16,0	25,8	24,0	24,0
	HSL-3 / HSL-3-B		30,1	31,1	31,1	42,2	60,5	60,5	51,5	77,5	89,6
せん断	HSL-3-G		26,1	26,1	26,1	41,8	41,8	41,8	51,5	59,3	59,3
UMM V _{Rk}	HSL-3-SH / HSL-3-SK ^{a)}	[kN]	30,1	-	_	42,2	-	-	51,5	-	-
* KK	HSL-3-R, HSL-3-SKR a)		33,5	44,4	44,4	42,2	61,5	62,7	51,5	77,5	81,4
	HSL-3-GR		33,5	40,3	40,3	42,2	58,9	58,9	51,5	77,5	<i>78,7</i>
アンカー	-サイズ			M16			M20			M24	
ひび割れ	しを想定しないコンクリー	-ト									
引張	HSL-3 / HSL-3-B HSL-3-G	[kN]	50,5	65,0	65,0	70,6	95,0	95,0	92,8	100,0	100,0
N _{Rk}	HSL-3-R HSL-3-GR	[KIN]	50,5	65,0	65,0	70,6	95,0	95,0	-	-	-
	HSL-3 / HSL-3-B		101,0	141,2	158,5	141,2	186,0	186,0	185,5	204,5	204,5
せん断	HSL-3-G	[kN]	101,0	120,6	120,6	141,2	155,3	155,3	185,5	204,5	204,5
V_{Rk}	HSL-3-R	[KIN]	101,0	128,2	128,2	141,2	145,2	145,2	-	-	-
	HSL-3-GR		101,0	129,5	129,5	141,2	151,9	151,9	-	_	-

124

アンカー	サイズ		M16			M20			M24		
ひび割れ	を想定したコンクリー	>									
引張	HSL-3 / HSL-3-B HSL-3-G	· [kN]	36,0	36,0	36,0	50,3	50,0	50,0	66,1	65,0	65,0
N _{Rk}	HSL-3-R HSL-3-GR	[KIN]	36,0	36,0	36,0	50,3	50,0	50,0	-	-	-
	HSL-3 / HSL-3-B		72,0	100,6	132,3	100,6	138,9	181,2	132,3	173,9	204,5
せん断	HSL-3-G	[kN]	72,0	100,6	120,6	100,6	138,9	155,3	132,3	173,9	204,5
V_{Rk}	HSL-3-R	[KIN]	72,0	100,6	128,2	100,6	138,9	145,2	ı	ı	-
	HSL-3-GR	-	72,0	100,6	129,5	100,6	138,9	151,9	-	-	-

a) HSL-3-SH、HSL-3-SK、HSL-3-SKR はポジション1の設置方法でのみ有効

有効埋込み長 a)

アンカーサイズ			M8			M10			M12	
有効埋込み長	h _{ef} [mm	h _{ef,1} b)	h _{ef,2}	h _{ef,3}	h _{ef,1} b)	h _{ef,2}	h _{ef,3}	h _{ef,1} b)	h _{ef,2}	h _{ef,3}
有劝连处07支	h _{ef} [mm	60	80	100	70	90	110	80	105	130
アンカーサイズ			M16			M20			M24	
有効埋込み長	h [mm	h _{ef,1}	h _{ef,2}	h _{ef,3}	h _{ef,1}	h _{ef,2}	h _{ef,3}	h _{ef,1}	h _{ef,2}	h _{ef,3}
有别连处07长	h _{ef} [mm	100	125	150	125	155	185	150	180	210

a) HSL-3-SH、HSL-3-SK、HSL-3-SKR のサイズは M8~M12 のみ

設計耐力

アンカー	サイズ			M8			M10			M12	
ひび割れ	を想定しないコンクリート										
引張	HSL-3 / HSL-3-B HSL-3-G HSL-3-SH / HSL-3-SK ^{a)}	[kN]	13,0	19,5	19,5	19,7	28,7	31,1	24,1	36,2	44,9
N _{Rd}	HSL-3-R / HSL-3-SKR ^{a)} HSL-3-GR		13,3	13,3	13,3	19,7	21,7	21,7	24,1	31,6	31,6
	HSL-3 / HSL-3-B		24,9	24,9	24,9	39,4	48,4	48,4	48,2	71,7	71,7
11111111111111111111111111111111111111	HSL-3-G	-	20,9	20,9	20,9	33,4	33,4	33,4	47,4	47,4	47,4
せん断 V _{Rd}	HSL-3-SH / HSL-3-SK ^{a)}	[kN]	24,9	-	-	39,4	-	-	48,2	-	-
▼ Rd	HSL-3-R, HSL-3-SKR a)		31,3	35,5	35,5	39,4	40,2	40,2	48,2	<i>52,2</i>	52,2
	HSL-3-GR		31,3	32,2	32,2	39,4	47,1	48,2	63,0	63,0	67,3
ひび割れ	を想定したコンクリート										
引張	HSL-3 / HSL-3-B HSL-3-G HSL-3-SH / HSL-3-SK ^{a)}	[kN]	6,7	6,7	6,7	10,7	10,7	10,7	17,2	16,0	16,0
N _{Rd}	HSL-3-R / HSL-3-SKR ^{a)} HSL-3-GR		8,0	8,0	8,0	10,7	10,7	10,7	17,2	16,0	16,0
	HSL-3 / HSL-3-B		20,1	24,9	24,9	28,1	41,0	48,4	34,3	51,6	71,1
++ / 呼5	HSL-3-G	-	20,1	20,9	20,9	28,1	33,4	33,4	34,3	47,4	47,4
せん断 V _{Rd}	HSL-3-SH / HSL-3-SK ^{a)}	[kN]	20,1	_	ı	28,1	-	-	34,3	-	-
• Ka	HSL-3-R, HSL-3-SKR a)	_	22,3	34,3	35,5	28,2	40,2	40,2	34,4	51,6	52,2
	HSL-3-GR		22,3	32,2	32,2	28,1	41,0	47,1	34,3	51,6	63,0

b) HSL-3-SH, HSL-3-SK and HSL-3-SKR は設置方法1でのみ有効

アンカー	サイズ			M16			M20			M24	
ひび割れ	を想定しないコンクリー	/									
引張	HSL-3 / HSL-3-B HSL-3-G	- [kN]	33,7	43,3	43,3	47,1	63,3	63,3	61,8	66,7	66,7
N _{Rd}	HSL-3-R HSL-3-GR	- [KIN]	33,7	43,3	43,3	47,1	63,3	63,3	-	-	-
	HSL-3 / HSL-3-B	_	67,3	94,1	123,7	94,1	129,9	148,8	123,7	162,6	163,6
せん断	HSL-3-G	- - [kN]	67,3	94,1	96,5	94,1	124,2	124,2	123,7	162,6	163,6
V_{Rd}	HSL-3-R	- [KIN]	67,3	82,2	82,2	93,1	93,1	93,1	-	-	-
-	HSL-3-GR	_	67,3	94,1	103,6	94,1	121,5	121,5	-	-	-
ひび割れ	を想定したコンクリート										
引張	HSL-3 / HSL-3-B HSL-3-G	- [kN]	24,0	24,0	24,0	33,5	33,3	33,3	44,1	43,3	43,3
N _{Rd}	HSL-3-R HSL-3-GR	- [KIN]	24,0	24,0	24,0	33,5	33,3	33,3	-	-	-
	HSL-3 / HSL-3-B		48,0	67,1	88,2	67,1	92,6	120,8	88,2	115,9	146,1
せん断	-ん断 HSL-3-G	- - [kN]	48,0	67,1	88,2	67,1	92,6	120,8	88,2	115,9	146,1
C/0E/I	HSL-3-R	- [KIN] -	48,0	67,1	82,2	67,1	92,6	93,1	1	-	-
	HSL-3-GR	_	48,0	67,1	88,2	67,1	92,6	120,8	-	-	-

a) HSL-3-SH、HSL-3-SK、HSL-3-SKR のサイズは M8~M12 のみ

有効埋込み長 a)

13/7/12/20/20											
アンカーサイズ				M8			M10			M12	
有効埋込み長	h .	[mm]	h _{ef,1} b)	h _{ef,2}	h _{ef,3}	h _{ef,1} b)	h _{ef,2}	h _{ef,3}	h _{ef,1} b)	h _{ef,2}	h _{ef,3}
有劝连处07支	h _{ef}	[111111]	60	80	100	70	90	110	80	105	130
Anchor size				M16			M20			M24	
右が押りる目	h	[mm]	h _{ef,1}	h _{ef,2}	h _{ef,3}	h _{ef,1}	h _{ef,2}	h _{ef,3}	h _{ef,1}	h _{ef,2}	h _{ef,3}
有効埋込み長	h _{ef}	[mm]	100	125	150	125	155	185	150	180	210

a) HSL-3-SH, HSL-3-SK and HSL-3-SKR のサイズは M8~M12 のみ

許容安全荷重 b)

アンカー				M8			M10			M12	
	を想定しないコンクリート										
引張	HSL-3 / HSL-3-B HSL-3-G HSL-3-SH / HSL-3-SK ^{a)}	[kN]	9,3	14,0	14,0	14,1	20,5	22,2	17,2	25,9	32,1
N_{Rec}	HSL-3-R / HSL-3-SKR ^{a)} HSL-3-GR		9,5	9,5	9,5	14,1	15,5	15,5	17,2	22,5	22,5
	HSL-3 / HSL-3-B		17,8	17,8	17,8	28,2	34,6	34,6	34,4	51,2	51,2
111/140	HSL-3-G		14,9	14,9	14,9	23,9	23,9	23,9	33,9	33,9	33,9
せん断 V _{Rec}	HSL-3-SH / HSL-3-SK ^{a)}	[kN]	17,8	ı	ı	28,2	ı	ı	34,4	ı	-
▼ Rec	HSL-3-R, HSL-3-SKR a)		22,4	25,4	25,4	28,2	28,7	28,7	34,4	<i>37,3</i>	<i>37,3</i>
- د ارانانا ^{ان م} ه د م	HSL-3-GR		22,4	23,0	23,0	28,2	<i>33,7</i>	<i>33,7</i>	34,4	45,0	45,0
ひび割れ	を想定したコンクリート										
引張	HSL-3 / HSL-3-B HSL-3-G HSL-3-SH / HSL-3-SK ^{a)}	[kN]	4,8	4,8	4,8	7,6	7,6	7,6	12,3	11,4	11,4
N_{Rec}	HSL-3-R / HSL-3-SKR ^{a)} HSL-3-GR		5,7	5,7	5,7	7,6	7,6	7,6	12,3	11,4	11,4
	HSL-3 / HSL-3-B		14,3	17,8	17,8	20,1	29,3	34,6	24,5	36,9	50,8
11/14	HSL-3-G		14,3	14,9	14,9	20,1	23,9	23,9	24,5	33,9	33,9
せん断 V _{Rec}	HSL-3-SH / HSL-3-SK ^{a)}	[kN]	14,3	-	-	20,1	-	-	24,5	-	-
• Kec	HSL-3-R, HSL-3-SKR a)		15,9	24,5	25,4	20,1	28,7	28,7	24,5	36,9	37,3
	HSL-3-GR	•	15,9	23,0	23,0	20,1	29,3	<i>33,7</i>	24,5	36,9	45,0

b) HSL-3-SH, HSL-3-SK and HSL-3-SKR は設置方法1でのみ有効

アンカー				M16			M20			M24	
ひび割れ	を想定しないコンクリート		1								
引張	HSL-3 / HSL-3-B HSL-3-G	[kN]	24,0	31,0	31,0	33,6	45,2	45,2	44,2	47,6	47,6
N _{Rec}	HSL-3-R HSL-3-GR	[KIN]	24,0	31,0	31,0	33,6	45,2	45,2	-	-	-
	HSL-3 / HSL-3-B		48,1	67,2	88,4	67,2	92,8	106,3	88,4	116,1	116,9
せん断	HSL-3-G	[kN]	48,1	67,2	68,9	67,2	88,7	88,7	88,4	116,1	116,9
V_{Rec}	HSL-3-R	[KIN]	48,1	<i>58,7</i>	<i>58,7</i>	66,5	66,5	66,5	-	-	-
	HSL-3-GR		48,1	67,2	74,0	67,2	86,8	86,8	-	-	-
ひび割れ	を想定したコンクリート										
引張	HSL-3 / HSL-3-B HSL-3-G	[kN]	17,1	17,1	17,1	24,0	23,8	23,8	31,5	31,0	31,0
N _{Rec}	HSL-3-R HSL-3-GR	[KIN]	17,1	17,1	17,1	24,0	23,8	23,8	-	-	-
	HSL-3 / HSL-3-B		34,3	47,9	63,0	47,9	66,2	86,3	63,0	82,8	104,3
せん断	ん断 HSL-3-G	[kN]	34,3	47,9	63,0	47,9	66,2	86,3	63,0	82,8	104,3
V_{Rec}	HSL-3-R	[KIN]	34,3	47,9	58,7	47,9	66,2	66,5	1	-	-
	HSL-3-GR		34,3	47,9	63,0	47,9	66,2	86,3	-	-	-

- a) HSL-3-SH、HSL-3-SK、HSL-3-SKR のサイズは M8~M12 のみ
- b) 部分安全係数は、荷重の種類ごと、国ごとの規定により決められる係数で、ここでは $\gamma=1.4$ を採用している。

地震荷重 (アンカー単体対象)

本項における全てのデータは下記条件による。

- 所定のアンカー施工 (施工条件・手順参照)
- へりあきやアンカーピッチの影響がない
- 鋼材破壊
- 最小母材厚
- コンクリート圧縮強度 C 20/25, f_{ck,cube}=25 N/mm² (JIS 規格 F_c≒21N/mm² 相当)
- $a_{gap} = 0.5$
- HSL-3-R、HSL-3-SKR、HSL-3-GR の値はハンマードリル穿孔のみ適用

有効埋込み長 耐震認証 C2 による a)

アンカーサイズ				M10			M12			M16			M20	
有効埋込み長	h	[mm]	h _{ef,}											
有别连处07支	Hef	[mm]	70	90	11	80	10	13	10	12	15	12	15	18

a) HSL-3-SH、HSL-3-SK はポジション 1 の設置方法でのみ有効で、サイズは M10~M12 のみ

基準耐力 耐震認定 C2 の場合

アンカ-	ーサイズ			M10			M12			M16			M20	
引張	HSL-3 / HSL-3-B HSL-3-G	[kN]	12,2	12,2	12,2	21,9	25,8	25,8	30,6	34,2	34,2	40,1	40,1	40,1
	HSL-3-SH / HSL-3-SK	=	12,2	-	-	21,9	1	-	-	-	-	-	-	-
111 地口	HSL-3 / HSL-3-B		9,4	9,4	9,4	13,2	13,2	13,2	25,4	25,4	25,4	39,1	39,1	39,1
せん断 V _{Rk,seis}	HSL-3-G	[kN]	9,0	9,0	9,0	11,3	11,3	11,3	22,3	22,3	22,3	25,1	25,1	25,1
* KK,SelS	HSL-3-SH / HSL-3-SK		9,4	-	-	13,2	-	-	-	-	-	-	-	-

設計耐力 耐震認定 C2 の場合

アンカ-	ーサイズ			M10			M12			M16			M20	
引張	HSL-3 / HSL-3-B HSL-3-G	[kN]	8,1	8,1	8,1	14,6	17,2	17,2	20,4	22,8	22,8	26,7	26,7	26,7
$N_{Rd,seis}$	HSL-3-SH / HSL-3-SK	_	8,1	-	-	14,6	-	-	-	-	-	-	-	-
11/14	HSL-3 / HSL-3-B		7,5	7,5	7,5	10,5	10,5	10,5	20,3	20,3	20,3	31,2	31,2	31,2
せん断 V _{Rd,seis}	HSL-3-G	[kN]	7,2	7,2	7,2	9,0	9,0	9,0	17,8	17,8	17,8	20,1	20,1	20,1
▼ Ra,seis	HSL-3-SH / HSL-3-SK		7,5	-	-	10,5	-	-	-	-	-	-	-	-

有効埋込み長 耐震認証 C1 による a)

19773 —70-77	<u> </u>										
アンカーサイズ				M8			M10			M12	
有効埋込み長	h	[mm]	h _{ef,1} b	h _{ef,2}	h _{ef,3}	h _{ef,1} b	h _{ef,2}	h _{ef,3}	h _{ef,1} b	h _{ef,2}	h _{ef,3}
有别连达07长	h _{ef}	[mm]	60	80	100	70	90	110	80	105	130
アンカーサイズ				M16			M20			M24	
有効埋込み長	h	[mm]	h _{ef,1}	h _{ef,2}	h _{ef,3}	h _{ef,1}	h _{ef,2}	h _{ef,3}	h _{ef,1}	h _{ef,2}	h _{ef,3}
一	h _{ef}	[mm]	100	125	150	125	155	185	150	180	210

- a) HSL-3-SH、HSL-3-SK、HSL-3-SKR のサイズは M8~M12 のみ
- b) HSL-3-SH、HSL-3-SK、HSL-3-SKR は設置方法1でのみ有効

基準耐力 耐震認定 C1 の場合

アンカー	サイズ			M8			M10			M12	
引張	HSL-3 / HSL-3-B HSL-3-G	F1-817	12,0	12,0	12,0	16,0	16,0	16,0	21,9	24,0	24,0
$N_{Rk,seis}$	HSL-3-SH / HSL-3-SK	- [kN]	12,0	-	-	16,0	-	-	21,9	-	-
	HSL-3-R / HSL-3-SKR	_	12,0	12,0	12,0	16,0	16,0	16,0	21,9	24,0	24,0
	HSL-3 / HSL-3-B		8,9	8,9	8,9	22,1	22,1	22,1	29,1	29,1	29,1
せん断	HSL-3-G	- - [kN]	7,5	7,5	7,5	15,3	15,3	15,3	19,3	19,3	19,3
V _{Rk,seis}	HSL-3-SH / HSL-3-SK ^{a)}	_ [KIN]	8,9	-	-	22,1	ı	-	29,1	-	-
	HSL-3-R / HSL-3-SKR	_	5,2	5,2	5,2	12,9	12,9	12,9	14,0	21,9 24,0 2 21,9 - 21,9 24,0 2 29,1 29,1 2 19,3 19,3 2 29,1 - 14,0 14,0 1 M24 56,2 65,0 6	14,0
アンカー	サイズ			M16			M20			M24	
引張	HSL-3 / HSL-3-B HSL-3-G	[kN]	30,6	36,0	36,0	42,8	50,0	50,0	56,2	65,0	65,0
$N_{Rk,seis}$	HSL-3-R / HSL-3-SKR	_	30,6	36,0	36,0	42,8	50,0	50,0	56,2	65,0	65,0
1111年	HSL-3 / HSL-3-B		57,1	57,1	57,1	54,9	54,9	54,9	81,8	81,8	81,8
せん断 V _{Rk,seis}	HSL-3-G	[kN]	43,4	43,4	43,4	45,8	45,8	45,8	-	-	-
* KK,SelS	HSL-3-R / HSL-3-SKR		29,6	29,6	29,6	29,6	29,6	29,6	-	_	_

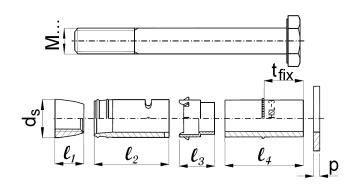
設計耐力 耐震認定 C1 の場合

	間接応とこり物口										
アンカー	サイズ			М8			M10			M12	
引張	HSL-3 / HSL-3-B HSL-3-G	FL.N.I.T.	6,7	6,7	6,7	10,7	10,7	10,7	14,6	16,0	16,0
$N_{Rd,seis}$	HSL-3-SH / HSL-3-SK	[kN]	6,7	-	-	10,7	-	-	14,6	-	-
	HSL-3-R / HSL-3-SKR	_	8,0	8,0	8,0	10,7	10,7	10,7	14,6	16,0	16,0
	HSL-3 / HSL-3-B	_	7,1	7,1	7,1	17,7	17,7	17,7	23,3	23,3	23,3
せん断	HSL-3-G	- - [kN]	6,0	6,0	6,0	12,2	12,2	12,2	15,4	15,4	15,4
$V_{Rd,seis}$	HSL-3-SH / HSL-3-SK ^{a)}	- [KIN]	7,1	ı	ı	17,7	ı	ı	23,3	ı	-
	HSL-3-R / HSL-3-SKR	_	4,2	4,2	4,2	8,3	8,3	8,3	9,0	9,0	9,0
アンカー	サイズ			M16			M20			M24	
引張	HSL-3 / HSL-3-B HSL-3-G	[kN]	20,4	24,0	24,0	28,5	33,3	33,3	37,5	43,3	43,3
$N_{Rd,seis}$	HSL-3-R / HSL-3-SKR	_	20,4	24,0	24,0	28,5	33,3	33,3	ı	-	-
++ / 140	HSL-3 / HSL-3-B	_	40,8	45,6	45,6	43,9	43,9	43,9	65,4	65,4	65,4
せん断 V _{Rk,seis}	HSL-3-G	[kN]	34,7	34,7	34,7	36,6	36,6	36,6	ı	-	-
▼ KK,SeiS	HSL-3-R / HSL-3-SKR		19,0	19,0	19,0	19,0	19,0	19,0	-	-	-

材料

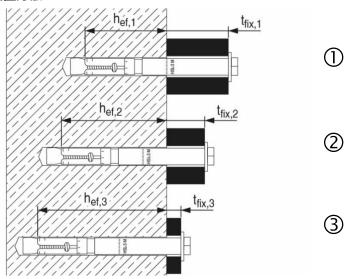
機械的特性

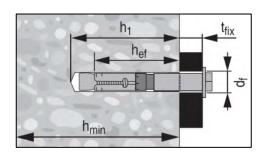
アンカーサイズ			M8	M10	M12	M16	M20	M24
HSL-3、HSL-3	-G、HSL-3-B、	HSL-3-SH、	HSL-3-S	K				
公称引張強度 fuk	([N/mm²]	800	800	800	800	830	830
降伏強度 fyk		[N/mm²]	640	640	640	640	640	640
断面積 As		[mm²]	36,6	58,0	84,3	157	245	353
断面係数 W		[mm³]	31,3	62,5	109,4	277,1	540,6	935,4
スリーブ無しの的	曲げ抵抗 M _{Rd,s}	[Nm]	24,0	48,0	84,0	212,8	415,2	718,4
HSL-3-R、HSL	3-GR、HSL-3	3-SKR						
公称引張強度 fuk		[N/mm²]	700	700	700	700	700	ı
降伏強度 f _{vk}	HSL-3-R HSL-3-SKR	[N/mm²]	560	450	450	450	450	ı
7	HSL-3-GR		560	560	560	560	560	-
断面積 As		[mm²]	36,6	58,0	84,3	157	245	-
断面係数 W		[mm³]	31,3	62,5	109,4	277,1	540,6	-
スリーブ無しの的	曲げ抵抗 M _{Rd,s}	[Nm]	16,8	33,5	58,8	149,4	291,3	-


材質

名称		材料
炭素鋼		
HSL-3	コーンナット	炭素鋼、電気亜鉛めっき 5 µm 以上
HSL-3-G	拡張スリーブ	炭素鋼、電気亜鉛めっき 5 µm 以上
HSL-3-B HSL-3-SH	プラスティックスリーブ	POM プラスティック
HSL-3-SK	スリーブ	炭素鋼、電気亜鉛めっき 5 µm 以上
HSL-3	ワッシャー	炭素鋼、電気亜鉛めっき 5 µm 以上
HSL-3	六角ボルト	炭素鋼、電気亜鉛めっき 5 µm 以上、破断伸び 12%以上
HSL-3-G	六角ナット	炭素鋼、電気亜鉛めっき 5 µm 以上
nst-3-G	全ねじボルト	炭素鋼、電気亜鉛めっき 5 µm 以上、破断伸び 12%以上
HSL-3-B	安全キャップ付六角ボルト	炭素鋼、電気亜鉛めっき 5 µm 以上、破断伸び 12%以上
HSL-3- SH	ソケット付スクリュー	炭素鋼、電気亜鉛めっき 5 µm 以上、破断伸び 12%以上
HSL-3-	皿頭ボルト	炭素鋼、電気亜鉛めっき 5 µm 以上、破断伸び 12%以上
SK	皿ワッシャー	炭素鋼、電気亜鉛めっき 5 µm 以上
ステンレス	鋼	
	コーンナット	ステンレス鋼 A4
HSL-3-R HSL-3-GR	拡張スリーブ	ステンレス鋼 A4
HSI -3-GK	プラスティックスリーブ	プラスティック
I ISE S SICIO	スリーブ	ステンレス鋼 A4
LICL 3 D	ワッシャー	ステンレス鋼 A4
HSL-3-R	六角ボルト	ステンレス鋼 A4、破断伸び 12%以上
LICL 3 CD	六角ナット	ステンレス鋼 A4
HSL-3-GR	全ねじボルト	ステンレス鋼 A4、破断伸び 12%以上
ווכו ז כיים	皿頭ボルト	ステンレス鋼 A4、破断伸び 12%以上
HSL-3-SKR	皿ワッシャー	ステンレス鋼 A4

アンカー寸法


名称	呼び径	t _{fix} [mm]	d _s	l ₁	l ₂	l ₃	l ₄ [r	nm]	р
4110.	-10 II	min	max	[mm]	[mm]	[mm]	[mm]	min	max	[mm]
HSL-3	M8	5	200	11,9	12	32	15,2	19	214	2
HSL-3-G	M10	5	200	14,8	14	36	17,2	23	218	3
HSL-3	M12	5	200	17,6	17	40	20	28	223	3
HSL-3-G	M16	10	200	23,6	20	54,4	24,4	34,5	224,5	4
HSL-3-B	M20	10	200	27,6	20	57	31,5	51	241	4
HSL-3 HSL-3-B	M24	10	200	31,6	22	65	39	57	247	4
	M8		5	11,9	12	32	15,2	1	9	2
HSL-3-SH	M10	2	20	14,8	14	36	17,2	3	8	3
	M12	2	25	17,6	17	40	20	4	-8	3
	M8	10	20	11,9	12	32	15,2	18,2	28,2	2
HSL-3-SK	M10	2	20	14,8	14	36	17,2	32	2,2	3
	M12	2	25	17,6	17	40	20	4	0	3



施工留付け

設置方法 a)

a) HSL-3-SH、HSL-3-SK、HSL-3-SKR は設置方法1でのみ有効

HSL-3 / HSL-3-R 施工仕様

HSL-3 / HSL-3-R	£			М8			M10		M12		
穿孔径(ビットの呼び径)	d ₀	[mm]		12			15			18	
*1	d_{cut}	[mm]		(12,5)			(15,5)		(18,5)		
取付物の下穴最大径	d_{f}	[mm]		14		17			20		
設置方法	i		① ② ③			1	2	3	1	2	3
取付物厚	$t_{fix,1}$	[mm]		5-200			5-200			5-200	
取付物 有効厚	$t_{fix,i}$					t_{f}	_{ix,1} 1) - <u>/</u>	Δi			
取付物厚による低減	Δi	[mm]	0 20 40			0	20	40	0	25	50
有効埋込み長	$h_{\text{ef,i}}$	[mm]	60	80	100	70	90	110	80	105	130
最小穿孔長	h _{1, i}	[mm]	80	100	120	90	110	130	105	130	155
最小母材厚	h _{min,i}	[mm]	120	170	195	140	195	215	160	225	250
ナット二面幅	SW	[mm]	13			17			19		
締付トルク (HSL-3-R)	T_{inst}	[Nm]	25			<u> </u>	50 (35)		80	
HSL-3 / HSL-3-R				M16		M20				M24 ^{a)}	
穿孔径(ビットの呼び径)	d_0	[mm]		24		28				32	
*1	d_{cut}	[mm]		(24,5)		(28,55)			(32,7)		
取付物の下穴最大径	d_{f}	[mm]		26			31			35	
設置方法	i		()	0	3	1	0	3	1	2	3
取付物厚	t_{fix1}	[mm]		10-200)		10-200			10-200)
取付物 有効厚	$t_{fix,i}$					t_{fi}	_{x,1} 1) – <i>I</i>	Δi			
取付物厚による低減	Δi	[mm]	0	25	50	0	30	60	0	30	60
有効埋込み長	$h_{\text{ef,i}}$	[mm]	100	125	150	125	155	185	150	180	210
最小穿孔長	h _{1,i}	[mm]	125 150 175		155	185	215	180	210	240	
最小母材厚	h _{min,i}	[mm]	200 275 300			250 380 410			300	405	435
ナット二面幅	SW	[mm]	24			30			36		
締付トルク (HSL-3-R)	T_{inst}	[Nm]		120		200			250		

a) HSL-3 炭素鋼ボルトは M24 のみ *1 付録の d_{cut} 説明をご参照ください。

HSL-3-G / HSL-3-GR 施工詳細情報

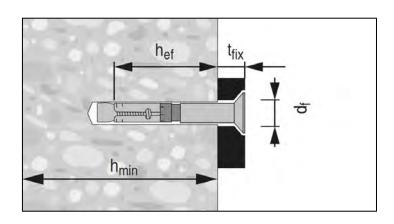
HSL-3-G / HSL-3-GR	4			M8			M10			M12	
穿孔径(ビットの呼び径)	d_0	[mm]		12			15			18	
*1	d_{cut}	[mm]		(12,5)		(15,5)			(18,5)		
取付物の下穴最大径	d_f	[mm]	14			17			20		
設置方法	i		0 2 3			①	2	3	①	2	3
取付物厚	$t_{fix,1}$	[mm]		5-200			5-200			5-200	
取付物 有効厚	$t_{fix,i}$					t _{fix,}					
取付物厚による低減	Δi	[mm]	0	20	40	0	20	40	0	25	50
有効埋込み長	$h_{\text{ef,i}}$	[mm]	60	80	100	70	90	110	80	105	130
最小穿孔長	h _{1, i}	[mm]	80	100	120	90	110	130	105	130	155
最小母材厚	$h_{\text{min,i}}$	[mm]	120	170	190 ^{a)} / 195	140	195	215	160	225	250
ナット二面幅	SW	[mm]		13			17			19	
締付トルク	T _{inst}	[Nm]		20 (30))	(-)	35 (50)		(50 (80))
HSL-3-G / HSL-3-GR				M16			M20			M24 ^{a)})
穿孔径(ビットの呼び径)	d_0	[mm]		24		28			32		
*1	d_{cut}	[mm]		(24,55)	ı	((28,55)			(32,7)	
取付物の下穴最大径	d_f	[mm]		26			31			35	
設置方法	İ		1	2	3	①	2	3	1	2	3
取付物厚	t_{fix1}	[mm]		10-200)		10-200		-	10-200)
取付物 有効厚	$t_{fix,i}$					t_{fix} ,	₁ 1) - ∆i				
取付物厚による低減	Δi	[mm]	0	25	50	0	30	60	0	30	60
有効埋込み長	$h_{\text{ef,i}}$	[mm]	100 125 150		125	155	185	150	180	210	
最小穿孔長	$h_{1,i}$	[mm]				155	185	215	180	210	240
最小母材厚	$h_{\text{min,i}}$	[mm]				250 380 410			300	405	435
ナット二面幅	SW	[mm]	= -			30			36		
締付トルク	T_{inst}	[Nm]		80 (120)	16	50 (200	180			

a) HSL-3-G 炭素鋼ボルトは M24 のみ *1 付録の d_{cut} 説明をご参照ください。

HSL-3-B 施工詳細情報

HSL-3-B				M12		M16		M20		M24				
穿孔径(ビットの呼び 径)	d_0	[mm]	18			24			28			32		
*1	d _{cut}	[mm]	(18,5)			(24,55)			(28,55	5)	((32,7))
取付物の下穴最大径	d_f	[mm]	20			26			31			35		
設置方法	i		①	0	3	\odot	0	3	1	2	3	①	2	3
取付物厚	$t_{fix,1}$	[mm]	5 - 200			10 - 200			10 - 200			10 - 200		00
取付物 有効厚	$t_{fix,i}$						t	fix,1 ¹⁾ –	Δi					
取付物厚による低減	Δi	[mm]	0	25	50	0	25	50	0	30	60	0	30	60
有効埋込み長	h _{ef,i}	[mm]	80	105	130	100	125	150	125	155	185	150	180	210
最小穿孔長	h _{1, i}	[mm]	105	130	155	125	150	175	155	185	215	180	210	240
最小母材厚	h _{min,i}	[mm]	160	225	250	200	275	300	250	380	410	300	405	435
ナット二面幅	SW	[mm]	24			30			36				41	
締付トルク	T _{inst}	[Nm]		١	・ルクモ	Eーメントは安全キャ			ヤップにより調整			される	3	

HSL-3-SH 施工仕様 a)


HSL-3-SH			M8	M10	M12
穿孔径(ビットの呼び径)	d_0	[mm]	12	15	18
*1	d_{cut}	[mm]	(12,5)	(15,5)	(18,5)
取付物の下穴最大径	d _f	[mm]	14	17	20
取付物の厚	t_{fix}	[mm]	5	20	25
有効埋込み長	h _{ef}	[mm]	60	70	80
最小穿孔長	h ₁	[mm]	85	95	110
最小母材厚	h _{min}	[mm]	120	140	160
ナット二面幅	SW	[mm]	6	8	10
締付トルク	T_{inst}	[Nm]	25	35	60

a) HSL-3-SH、HSL-3-SK、HSL-3-SKR は設置方法1でのみ有効 *1 付録の d_{cut} 説明をご参照ください。

HSL-3-SK / HSL-3-SKR 施工仕様 a)

1102 0 01t / 1102 0 01th	III 131			
HSL-3-SK / HSL-3-SKR		M8	M10	M12
穿孔径(ビットの呼び径)	d_0 [mm]	12	15	18
*1	d _{cut} [mm]	(12,5)	(15,5)	(18,5)
取付物の下穴最大径	d _f [mm]	14	17	20
取付物内の皿頭上部径	d _h [mm]	22,5	25,5	32,9
取付物内の皿頭下部径	d _h [mm]	11,4	14,4	17,4
取付物内の皿頭高さ	h _{cs} [mm]	5,8	6,0	8,0
取付物厚	t _{fix} [mm]	10 - 20	20	25
有効埋込み長	h _{ef} [mm]	60	70	80
最小穿孔長	h ₁ [mm]	80	90	105
最小母材厚	h _{min} [mm]	120	140	160
ナット二面幅	SW [mm]	5	6	8
締付トルク	T _{inst} [Nm]	25 (18)	50	80

a) HSL-3-SH、HSL-3-SK、HSL-3-SKR は設置方法1でのみ有効

^{*1} 付録の d_{cut} 説明をご参照ください。

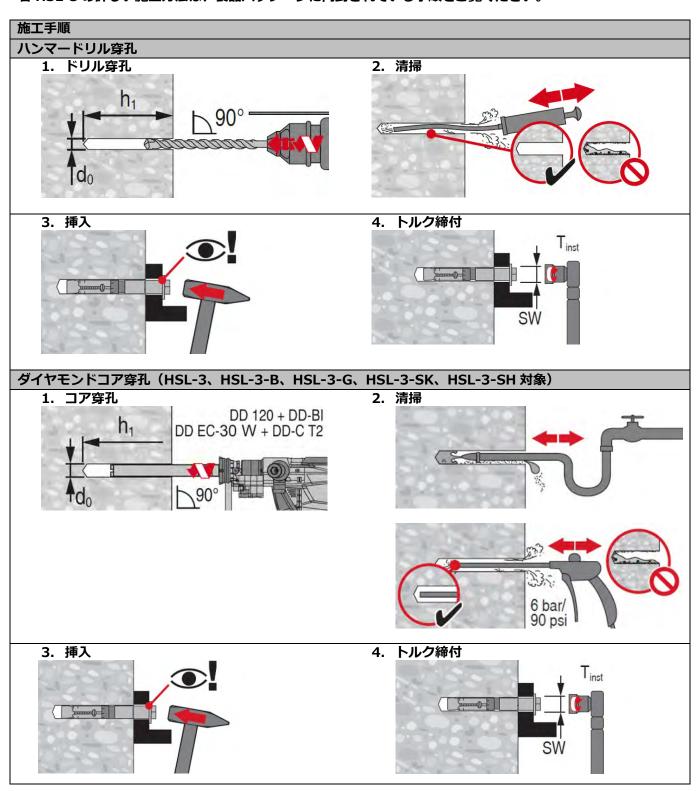
標準施工工具

アンカーサイズ	M8	M10	M12	M16	M20	M24		
ロータリーハンマードリル	•	TE 2 – TE 30	TE 40 - TE 80					
ダイヤモンドコア ¹⁾		DD 30-W		DD 30-W + SPX-T DD 120 + DD-BI				
その他の工具	ダストポンプ(ブロワー)、ハンマー、トルクレンチ ²⁾							

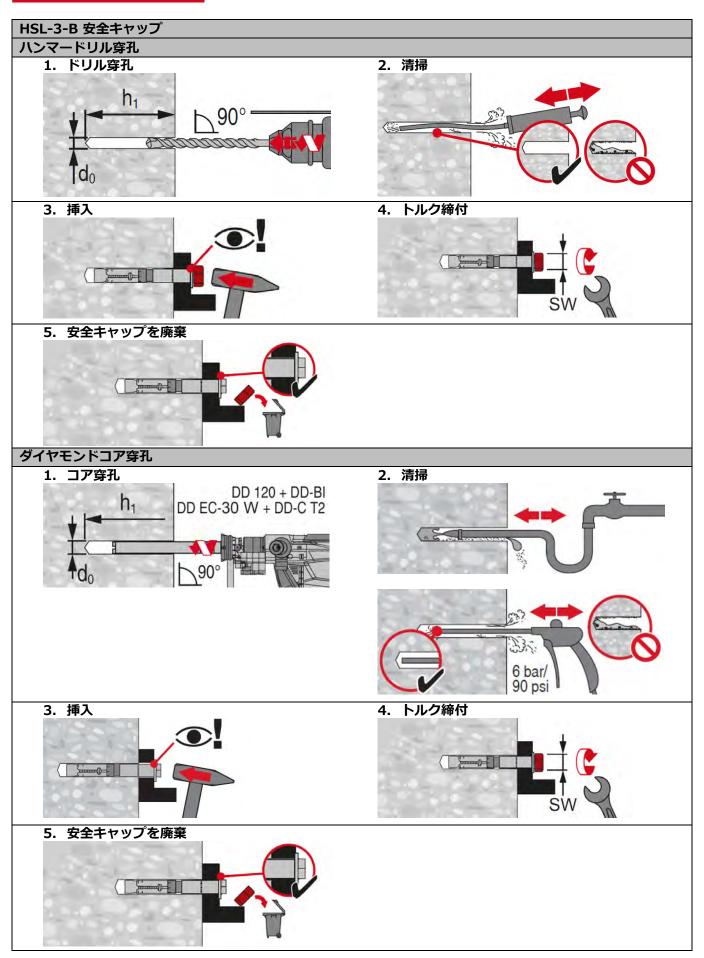
- 1) HSL-3-R、HSL-3-GR、HSL-3-SKR はロータリーハンマードリルのみ適用
- 2) HSL-3-B は正確な自動トルク管理を行うため、スパナを使用してください。

施工条件(HSL-3、HSL-3-G、HSL-3-B、HSL-3-SH、HSL-3-SK)

アンカーサイズ				M8			M10		M12		
設置方法	i		1	2	3	1	2	3	1	2	3
最小母材厚	h_{min}	[mm]	120	170	190	140	195	215	160	225	250
最小アンカーピッチ	S _{min}	[mm]		60			70			80	
最小ゲンが一とサブ	for c ≥	[mm]		100			100			160	
最小へりあき	C _{min}	[mm]		60			70			80	
扱うでくりめら	for s ≥	[mm]		100			160			240	
アンカーサイズ				M16			M20			M24	
設置方法	i		①	2	3	1	2	3	1	2	3
最小母材厚	h _{min}	[mm]	200	275	300	250	380	410	300	405	435
最小アンカーピッチ	S _{min}	[mm]		100			125			150	
取りアンカーこッテ	for c ≥	[mm]		240			300			300	
最小へりあき	C _{min}	[mm]		100			150			150	
取りへくりので	for s ≥	[mm]		240			300			300	

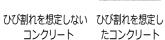

施工条件(HSL-3-R, HSL-3-GR, HSL-3-SKR)

アンカーサイズ				M8		M10		M12			M14			M20			
設置方法	i		1	2	3	①	2	3	1	2	3	1	2	3	1	2	3
最小母材厚	h _{min}	[mm]	120	170	195	140	195	215	160	225	250	200	275	300	250	380	410
ひび割れを想定しないコンクリート																	
最小アンカーピッチ	S _{min}	[mm]		70		70		80		100			125				
	for c ≥	[mm]	100		100		160		240		300						
最小へりあき	C _{min}	[mm]		70		80		80		100		150					
	for s ≥	[mm]	140		160		240		240		300						
ひび割れを想定したコンクリート																	
最小アンカーピッチ	S _{min}	[mm]	70			70		80		100		125					
	for c ≥	[mm]	100		100		170		240		300						
最小へりあき	C _{min}	[mm]	70		120		80		100		150						
	for s ≥	[mm]	140			160		240			240			300			



施工手順

*各 HSL-3 の詳しい施工方法は、製品パッケージに同封されている手順をご覧ください。


HST3 締付方式アンカー

アンカー 特長 - 高耐力:厚みの小さい部材、短いアンカ ーピッチ・へりあき対応 - 最適化されたコーティングの組み合わせ HST3 によりアンダーカット可能領域の増加 HST3-R (M8-M24)- C12/15 ~ C80/95 までのひび割れを想 定しない/想定したコンクリートに対応 - 欧州 ETA 耐震認証 C1/C2 により高い安 全と信頼性を持つアンカー - ETA 欧州技術認証において、2種類の 埋込み長に対応 - 小さいへりあきとアンカーピッチ - 高い設計引張耐力 - 品質および施工管理のためのマーキング HST3-BW により製品および長さの認識がしやすい HST3-R-BW (M8-M24)

母材 荷重条件

静的/準静的

その他

耐震認証 ETA-C1/C2

耐火

施工条件

ダイヤモンドコア 穿孔

ホロービット 穿孔 (集塵機能)

インパクトレンチ 専用 トルク管理 機能アダプター

欧州技術認証 ETA

CE 適合製品

PROFIS Anchor 設計ソフト対応

耐火 FM 認証

137

認証 / 証明書

種類	機関 / 研究所	No. / 発行年月日
ETA 欧州技術認証 a)	DIBt, Berlin	ETA-98/0001 / 2018-02-09
耐火試験報告書	DIBt, Berlin	ETA-98/0001 / 2018-02-09
耐衝擊認証	FOCP, Zurich	BZS D 08-602 / 2016-08-17

a) 本項の全てのデータは ETA-98/0001:2017-20-07 発行に準拠

静的・準静的として作用する荷重 (単体アンカー対象)

本項における全てのデータは下記条件による。 - 所定のアンカー施工 (施工条件・手順参照) - へりあきやアンカーピッチの影響がない

- 鋼材破壊
- 最小母材厚
- コンクリート圧縮強度 C 20/25, f_{ck,cube} = 25 N/mm² (JIS 規格 F_c≒21N/mm²相当)

有効埋込み長 静的

アンカーサイズ	アンカーサイス		M8	M:	M10		M12		M16		M24
有効埋込み長	h _{ef}	[mm]	47	40	60	50	70	65	85	101	125

基準耐力

アンカー	-サイズ		M8	M:	10	M:	12	M:	16	M20	M24
ひび割れ	1を想定しないコンクリー	\									
引張	HST3/HST3-BW	[kN]	12,0	12,8	22,0	17,9	25,0	26,5	39,6	51,3	60,0
N_{Rk}	HST3-R/HST3-R-BW	[KIN]	12,0	12,8	22,0	17,9	25,0	26,5	39,6	51,3	60,0
せん断	HST3/HST3-BW	[kN]	13,8	21,9	23,6	34,0	35,4	54,5	55,3	83,9	94,0
V_{Rk}	HST3-R/HST3-R-BW	[KIN]	<i>15,7</i>	25,6	25,3	31,1	<i>36,7</i>	48,6	63,6	97,2	115,0
ひび割れ	にを想定したコンクリート										
引張	HST3/HST3-BW	[kN]	8,0	9,1	15,0	12,7	20,0	18,9	28,2	36,5	40,0
N_{Rk}	HST3-R/HST3-R-BW	[KIN]	8,5	9,1	15,0	12,7	20,0	18,9	28,2	36,5	40,0
せん断	HST3/HST3-BW	[kN]	13,8	21,9	23,6	34,0	35,4	54,5	55,3	83,9	94,0
V_{Rk}	HST3-R/HST3-R-BW	[KIN]	<i>15,7</i>	24,3	25,3	31,1	<i>36,7</i>	48,6	63,6	97,2	115,0

設計耐力

アンカーサー	イズ		M8	M:	10	M:	12	M:	16	M20	M24
ひび割れを	想定しないコンクリート										
引張 N _{Rd}	HST3/HST3-BW	[kN]	8,0	8,5	14,7	11,9	16,7	17,6	26,4	34,2	40,0
ו אנוכי	HST3-R/HST3-R-BW	[KIN]	8,0	8,5	14,7	11,9	16,7	17,6	26,4	34,2	40,0
せん断	HST3/HST3-BW	[kN]	11,0	17,5	18,9	27,2	28,3	43,6	44,2	67,1	62,7
V_{Rd}	HST3-R/HST3-R-BW	[KIN]	12,6	20,5	20,2	24,9	29,4	38,9	50,9	<i>77,8</i>	88,5
ひび割れを	想定したコンクリート										
引張 N _{Rd}	HST3/HST3-BW	[kN]	5,3	6,1	10,0	8,5	13,3	12,6	18,8	24,4	26,7
או אנוכן _{Rd}	HST3-R/HST3-R-BW	[KIN]	5,7	6,1	10,0	8,5	13,3	12,6	18,8	24,4	26,7
せん断	HST3/HST3-BW	. FLANT	11,0	16,2	18,9	23,6	28,3	42,9	44,2	67,1	62,7
V_{Rd}	HST3-R/HST3-R-BW	[kN]	12,6	16,2	20,2	23,6	29,4	38,9	50,9	<i>77,</i> 8	83,9

許容安全荷重 a)

アンカーサ	イズ		M8	M:	10	M:	12	M:	16	M20	M24
ひび割れを	想定しないコンクリート										
引張 N _{Rec}	HST3/HST3-BW	[kN]	5,7	6,1	10,5	8,5	11,9	12,6	18,8	24,4	28,6
ואנוכ ויאנור אנוכ ויא	HST3-R/HST3-R-	[KIN]	5,7	6,1	10,5	8,5	11,9	12,6	18,8	24,4	28,6
せん断	HST3/HST3-BW	[kN]	7,9	12,5	13,5	19,4	20,2	31,1	31,6	47,9	44,8
V_{Rec}	HST3-R/HST3-R-	[KIN]	9,0	14,6	14,5	17,8	21,0	27,8	36,3	55,5	63,2
ひび割れを	想定したコンクリート										
引張 N _{Rec}	HST3/HST3-BW	[kN]	3,8	4,3	7,1	6,1	9,5	9,0	13,4	17,4	19,0
ואנוכ וא _{Rec}	HST3-R/HST3-R-	[KIN]	4,0	4,3	7,1	6,1	9,5	9,0	13,4	17,4	19,0
せん断	HST3/HST3-BW	[L/N/]	7,9	11,6	13,5	16,8	20,2	30,6	31,6	47,9	44,8
V_{Rec}	HST3-R/HST3-R-	[kN]	9,0	11,6	14,5	16,8	21,0	27,8	36,3	55,5	59,9

a) 部分安全係数は、荷重の種類ごと、国ごとの規定により決められる係数で、ここでは $\gamma = 1.4$ を採用している。

地震による荷重 (単体アンカー対象)

本項における全てのデータは下記条件による。 - 所定のアンカー施工 (施工条件・手順参照) - へりあきやアンカーピッチの影響がない

- 鋼材破壊
- 最小母材厚
- コンクリート圧縮強度 C 20/25, f_{ck,cube} = 25 N/mm² (JIS 規格 F_c≒21N/mm²相当) a_{gap} = 1,0 (ヒルティフィリングセット使用時)

有効埋込み長 耐震認証 C2 および C1

アンカーサイズ		M8	M10	M12	M16	M20	M24
有効埋込み長	h _{ef} [mm]	47	60	70	85	101	-

基準耐力 耐震認証 C2 の場合

アンカーサ	トイズ		M8	M10	M12	M16	M20	M24
引張	HST3 / HST3-BW	[kN]	3,0	10,4	17,9	24,0	31,1	-
$N_{Rk, seis}$	HST3-R / HST3-R-BW	[KIN]	3,4	10,4	17,9	24,0	31,1	-
せん断	HST3 / HST3-BW		9,9	19,0	28,6	48,5	84,3	-
V _{Rk,seis}	HST3-R / HST3-R- BW	[kN]	9,9	17,2	27,6	42,5	67,4	-

設計耐力 耐震認証 C2 の場合

アンカー!	ナイズ		M8	M10	M12	M16	M20	M24
引張	HST3 / HST3-BW	:N]	2,0	6,9	11,9	16,0	20,7	-
$N_{Rd, seis}$	HST3-R / HST3-R-BW	(IN)	2,3	6,9	11,9	16,0	20,7	-
せん断	HST3 / HST3-BW	:N]	7,9	<i>15,2</i>	22,9	38,8	66,3	-
$V_{Rd,seis}$	HST3-R / HST3-R-BW	(IN]	7,9	13,8	22,1	34,0	<i>53,9</i>	-

基準耐力 耐震認証 C1 の場合

アンカー!	サイズ		M8	M10	M12	M16	M20	M24
引張	HST3 / HST3-BW	N]	7,5	12,0	17,9	24,0	31,1	-
$N_{Rk, seis}$	HST3-R / HST3-R-BW	INJ	7,5	12,0	17,9	24,0	31,1	-
せん断	HST3 / HST3-BW	N]	16,6	25,8	39,0	60,9	99,4	-
$V_{Rk,seis}$	HST3-R / HST3-R-BW	IN]	19,5	28,4	44,3	70,2	99,4	-

設計耐力 耐震認証 C1 の場合

アンカー	サイズ		M8	M10	M12	M16	M20	M24
引張	HST3 / HST3-BW	[kN]	5,0	8,0	11,9	16,0	20,7	-
$N_{Rd, seis}$	HST3-R / HST3-R-BW	[KIN]	5,0	8,0	11,9	16,0	20,7	-
せん断	HST3 / HST3-BW	[kN]	13,3	20,6	31,2	48,7	66,3	-
$V_{Rd,seis}$	HST3-R / HST3-R-BW	[KIN]	15,6	22,7	33,2	54,5	66,3	1

耐火

本項における全てのデータは下記条件による。 - 所定のアンカー施工 (施工条件・手順参照) - へりあきやアンカーピッチの影響がない

- 鋼材破壊
- 最小母材厚
- コンクリート圧縮強度 C 20/25, $f_{ck,cube} = 25 \text{ N/mm}^2$ (JIS 規格 $F_c = 21 \text{N/mm}^2$ 相当) ヒルティ社内データ (コンクリート圧縮強度 C55/67 \sim C80/95) : DIN EN 1992-1-2 に準拠した要件を満たす構造要素のため、C20/25 用の耐火が想定されている。
- 加熱時の耐力のための部分安全係数 $\gamma_{M,fi}$ =1,0 (国による規定が他にない場合)

有効埋込み長 静的

アンカーサイズ		M8	M:	M10		M12		M16		M24	
有効埋込み長	h_{ef}	[mm]	47	40	60	50	70	65	85	101	125

基準耐力

アンカー	-サイズ		M8	M:	10	M	12	M16		M20	M24
30 分耐	火 ¹										
引張	HST3/HST3-BW	[kN]	0,9	1,5	2,4	2,3	5,0	4,4	7,1	9,1	12,6
$N_{Rk,fi}$	HST3-R/HST3-R-BW	[KIN]	1,9	1,8	3,0	3,2	5,0	4,7	7,1	9,1	12,6
せん断	HST3/HST3-BW	[kN]	0,9	1,5	2,4	2,3	5,2	4,4	9,7	15,2	21,9
$V_{Rk,fi}$	HST3-R/HST3-R-BW	[KIN]	4,9	4,7	11,8	8,9	17,1	16,9	31,9	37,0	62,8
120 分配	耐火 ¹										
引張	HST3/HST3-BW	[kN]	0,6	0,8	0,9	0,8	1,3	1,5	2,4	3,8	5,4
$N_{Rk,fi}$	HST3-R/HST3-R-BW	[KIN]	1,5	1,5	2,4	2,5	4,0	3,8	5,6	7,3	10,1
せん断	HST3/HST3-BW	[kN]	0,6	0,8	0,9	0,8	1,5	1,5	2,4	3,8	5,4
$V_{Rk,fi}$	HST3-R/HST3-R-BW	[KIN]	1,7	2,0	3,3	3,3	4,8	6,2	9,0	14,1	20,3

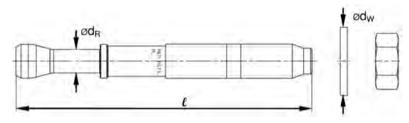
設計耐力

アンカー	アンカーサイズ				10	M12		M16		M20	M24
30 分耐	30 分耐火 ¹										
引張	HST3/HST3-BW	[kN]	0,9	1,5	2,4	2,3	5,0	4,4	7,1	9,1	12,6
N _{Rd,fi} HST3-R/HST3-R-BW	[KIN]	1,9	1,8	3,0	3,2	5,0	4,7	7,1	9,1	12,6	
せん断	HST3/HST3-BW	[kN]	0,9	1,5	2,4	2,3	5,2	4,4	9,7	15,2	21,9
$V_{Rd,fi}$	HST3-R/HST3-R-BW	[KIN]	4,9	4,7	11,8	8,9	17,1	16,9	31,9	37,0	62,8
120 分配	耐火 ¹										
引張	HST3/HST3-BW	[kN]	0,6	0,8	0,9	0,8	1,3	1,5	2,4	3,8	5,4
$N_{Rd,fi}$	HST3-R/HST3-R-BW	[KIN]	1,5	1,5	2,4	2,5	4,0	3,8	5,6	7,3	10,1
せん断	HST3/HST3-BW	[LN]	0,6	0,8	0,9	0,8	1,5	1,5	2,4	3,8	5,4
$V_{Rd,fi}$	HST3-R/HST3-R-BW	[kN]	1,7	2,0	3,3	3,3	4,8	6,2	9,0	14,1	20,3

^{1) 30}分、120分の加熱試験後、アンカー性能検証による値

材料

機械的特性

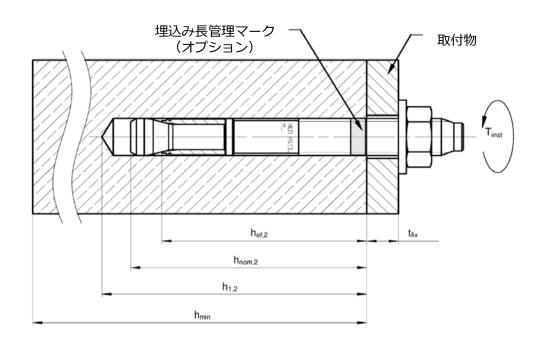

アンカーサイズ		M8	M10	M12	M16	M20	M24	
公称引張強度	HST3/HST3-BW	[N/mm²]	800	800	800	720	700	530
$f_{uk,thread}$	HST3-R/HST3-R-BW	[11/111111-]	720	710	710	650	650	650
攻42cc f	HST3/HST3-BW		640	640	640	576	560	450
降伏強度 fyk,thread	HST3-R/HST3-R-BW	$[N/mm^2]$	576	568	568	520	520	500
応力断面 As		[mm²]	36,6	58,0	84,3	157	245	353
断面係数 W		[mm³]	31,2	62,3	109	277	541	935
曲げ抵抗 M ⁰ _{Rk,s}	HST3/HST3-BW	[Mm]	30	60	105	240	457	595
mv/延加いM Rk,s	HST3-R/HST3-R-BW	[Nm]	27	53	93	216	425	730

材質

種類		Material
拡張スリーブ	HST3/HST3-BW	M10, M16: 亜鉛めっき、または、ステンレス鋼 M8, M12, M20, M24: ステンレス鋼
	HST3-R/HST3-R-BW	ステンレス鋼 A4
ボルト	HST3/HST3-BW	炭素鋼、亜鉛めっき
ואטור	HST3-R/HST3-R-BW	ステンレス鋼 A4
ワッシャー	HST3/HST3-BW	亜鉛めっき
	HST3-R/HST3-R-BW	ステンレス鋼 A4
六角ナット	HST3/HST3-BW	強度区分 8
八円ノット	HST3-R/HST3-R-BW	ステンレス鋼 A4

アンカー寸法 HST3, HST3-BW, HST3-R, HST3-R-BW

アンカーサイズ			M8	M10	M12	M16	M20	M24
アンカー全長	I _{max} ≤	[mm]	260	280	350	475	450	500
コーン部の軸径	d_R	[mm]	5,60	6,94	8,22	11,00	14,62	17,4
拡張スリーブ長	l _s	[mm]	13,6	16,0	20,0	25,0	28,3	36,0
ワッシャー外径	$d_w \ge$	[mm]	15,57	19,48	23,48	29,48	36,38	43,38



施工仕様

施工詳細

アンカーサイズ			M8	M10	M12	M16	M20	M24
穿孔径(ビットの呼び径)	d _o	[mm]	8	10	12	16	20	24
*1	d _{cut} ≤	[mm]	(8,45)	(10,45)	(12,5)	(16,5)	(20,55)	(24,55)
有効埋込み長	h _{ef,1}	[mm]	ı	40	50	65	-	-
何知连还07长	h _{ef,2}	[mm]	ı	60	70	85	101	125
穿孔長 ¹⁾	h _{1,1} ≥	[mm]	ı	53	68	86	-	ı
分10x *	h _{1,2} ≥		59	73	88	106	124	151
埋込み長	$h_{\text{nom,1}}$	[mm]	ı	48	60	78	-	ı
生达07段	$h_{\text{nom,2}}$	[mm]	54	68	80	98	116	143
取付物の許容下穴径	d_{f}	[mm]	9	12	14	18	22	26
締付トルク	T _{inst}	[Nm]	20	45	60	110	180	300
最大取付物厚	$t_{\text{fix,max}}$	[mm]	195	220	270	370	310	330
ナット二面幅	SW	[mm]	13	17	19	24	30	36

¹⁾ ダイヤモンドコア穿孔時、M8 ~ M10 は +5 mm、M12 ~ M24 は+2 mm *1 付録の dcut 説明をご参照ください。

標準施工工具

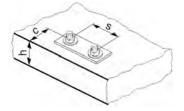
アンカーサイズ	M8	M10	M12	M16	M20	M24				
ロータリーハンマードリル		TE2(-A) -	TE30(-A)		TE40 - TE80					
ダイヤモンドコアツール			DD-30W	, DD-EC1	DD-EC1					
セッティングツール	Hilti S7W	/ 6AT 22A A22	– SI-AT-	-						
ホロービット(集塵機能)		-		TE-CD, TE-YD						
その他工具		ハンマ	ー、トルク	レンチ、ブロワー						

施工条件 HST3 / HST3-R (M8 と M10)

アンカーサイズ				M8			M	10	
コンクリート圧縮強度分類			C20/25~C50/60 ^{a)} C55/67~C80/95 ^{b)}		C12/15 ^{b)} C16/20 ^{b)}	C12/15 ~ C16/20 ^{a)}	C20/25~C50/60 ^{a)} C55/67~C80/95 ^{b)}		C12/15 ^{b)} C16/20 ^{b)}
有効埋込み長	h_{ef}	[mm]	4	47		40	60		60
最小母材厚	h_{min}	[mm]	80	100	100	80	100	120	120
最小アンカーピッチ	S _{min}	[mm]	35	35	35	50	40	40	70
│ ひび割れを想定しない │ コンクリート	for c ≥	[mm]	55	50	65	95	100	60	90
最小アンカーピッチ	S _{min}	[mm]	35	35	35	40	40	40	45
ひび割れを想定した コンクリート	for c ≥	[mm]	50 50		55	90	100	55	85
最小へりあき	C _{min}	[mm]	40	40	50	50	60	50	80
ひび割れを想定しない コンクリート	for s ≥	[mm]	50	50	80	190	90	90	120
最小へりあき	C _{min}	[mm]	40	40	40	45	60	45	70
ひび割れを想定した コンクリート	for s ≥	[mm]	50	50	75	180	90	80	120
割裂破壊およびコンクリートコーン状破壊を考慮した基準	S _{cr,sp}	[mm]	14	41	188	168	18	30	240
アンカーピッチ	S _{cr,N}	[mm]	14	41	141	120	18	30	180
割裂破壊およびコンクリート コーン状破壊を考慮した基準	C _{cr,sp}	[mm]	7	1	94	84	9	0	120
コーン仏 吸吸 で ち 慮 した 基本 へりあき	C _{cr,N}	[mm]	7	1	71	60	9	0	90

施工条件 HST3 / HST3-R (M12 と M16)

アンカーサイズ				М	12		M16				
コンクリート圧縮強度分	類				C20/25~C50/60 ^{a)} C55/67~C80/95 ^{b)}		C20/25 ~ C50/20 ^{a)}		∕C50/60 ^{a)} ∕C80/95 ^{b)}		
有効埋込み長	h_{ef}	[mm]	50	7	0	70	65	85		85	
最小母材厚	h_{min}	[mm]	100	120	140	140	120	140	160	160	
最小アンカーピッチ	S _{min}	[mm]	55	50	60	110	75	80	65	90	
ひび割れを想定しない コンクリート	for c ≥	[mm]	110	100	70	140	140	130	95	145	
最小アンカーピッチ	S _{min}	[mm]	50	50	50	80	65	80	65	70	
ひび割れを想定した コンクリート	for c ≥	[mm]	105	90	70	120	130	130	95	125	
最小へりあき	C _{min}	[mm]	60	60	55	90	65	65	65	110	
ひび割れを想定しない コンクリート	for s ≥	[mm]	210	120	110	190	240	180	150	170	
最小へりあき	C _{min}	[mm]	55	60	55	80	65	65	65	90	
ひび割れを想定した コンクリート	for s ≥	[mm]	210	120	110	170	240	180	150	165	
割裂破壊およびコンクリートコーン状破壊を考慮した基準	S _{cr,sp}	[mm]	180	21	LO	280	208	25	55	340	
アンカーピッチ	S _{cr,N}	[mm]	150	21	LO	210	195	255		255	
割裂破壊およびコンクリートコーン状破壊を考慮した基準	C _{cr,sp}	[mm]	90	10)5	140	104	12	28	170	
コーク状 吸収 で う 感 ひ た 幸幸 へ り あ き	C _{cr,N}	[mm]	75	10)5	105	98	12	28	128	

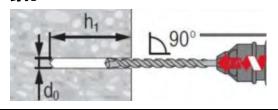


施工条件 HST3(-BW) / HST3-R(-BW) (M20 と M24)

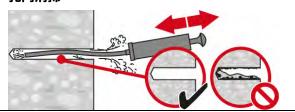
アンカーサイ	イズ				M20		M2	4
コンクリー	卜圧縮強度分类	Į.			~C50/60 ^{a)} ~C80/95 ^{b)}		C20/25~C50/60 ^{a)} C55/67~C80/95 ^{b)}	C12/15 ^{b)} C16/20 ^{b)}
有効埋込み	<u></u>	h _{ef}	[mm]	10)1	101	125	125
最小母材厚		h _{min}	[mm]	160			250	250
最小アンカ	HST3	S _{min}	[mm]	120	90	90	125	180
ーピッチ	HST3-BW	for c	[mm]	180	130	165	255	375
ひび割れを想定し		S _{min}	[mm]	120	90	90	125	180
最小アンカーピッチ	HST3-R-BW	for c	[mm]	180	130	165	205	375
最小アンカ	HST3	S _{min}	[mm]	120	90	90	125	140
ーピッチ	HST3-BW	for c	[mm]	180	130	165	180	325
ひび割れを想定し	HST3-	S _{min}	[mm]	120	90	90	125	140
たコンクリート	HST3-R-BW	for c	[mm]	180	130	140	130	325
最小へりあ	HST3	C _{min}	[mm]	120	80	90	170	260
₹	HST3-BW	for s	[mm]	180	180	140	295	400
ひび割れを想定した	HST3-R	C _{min}	[mm]	120	80	120	150	260
いコンクリート	HST3-R-BW	for s	[mm]	180	180	270	235	400
最小へりあ	HST3	C _{min}	[mm]	120	80	100	125	230
₹	HST3-BW	for s	[mm]	180	180	240	240	295
ひび割れを想定した	HST3-R	C _{min}	[mm]	120	80	100	125	230
コンクリート	HST3-R-BW	for s	[mm]	180	180	240	140	295
割裂破壊およるトコーン状破り		S _{cr,sp}	[mm]	38	34	404	375	500
基準アンカー		S _{cr,N}	[mm]	30)3	303	375	375
割裂破壊およるトコーン状破り		C _{cr,sp}	[mm]	19	92	202	188	250
基準へりあき	女に与ぶした	C _{cr,N}	[mm]	15	52	152	188	188

- a) ETA-98/0001:2017-20-07発行によるデータ b) ヒルティ社内データによるデータ

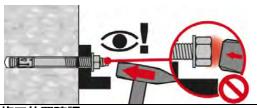
基準アンカーピッチ(基準へりあき)より小さいアンカーピッチ(へりあき)の場合は、設計荷重を低 減しなければならない。

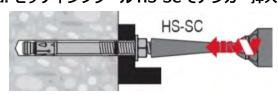

施工手順

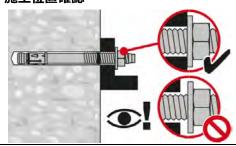
*詳しい施工方法は、製品パッケージに同封されている手順をご覧ください。

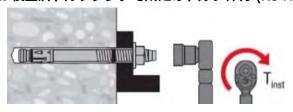

HST3, HST3-BW, HST3-R, HST3-R-BW

ロータリーハンマードリル穿孔 (M8, M10, M12, M16, M20, M24)


1. 穿孔


2. 孔内清掃

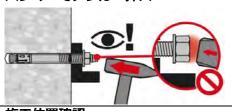

3a. ハンマーでアンカー挿入

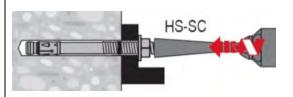

3a. セッティングツール HS-SC でアンカー挿入

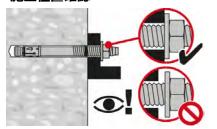
4. 施工位置確認

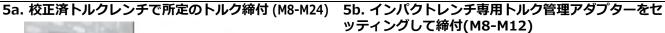
5a. 校正済トルクレンチで所定のトルク締付 (M8-M24)

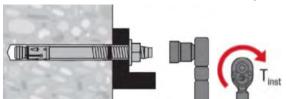
5b. インパクトレンチ専用トルク管理アダプターをセッティングして締付(M8-M12)

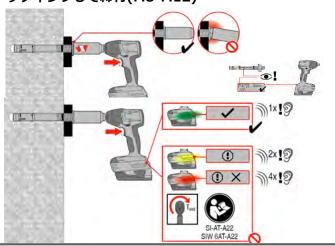


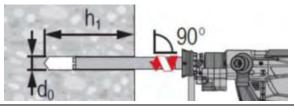

ホロービット穿孔 (M16, M20, M24) 清掃不要

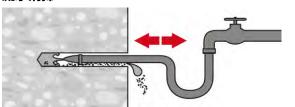

2a. ハンマーでアンカー挿入


2b. セッティングツール HS-SC でアンカー挿入



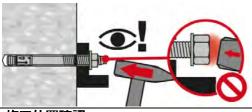

3. 施工位置確認

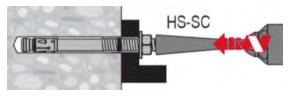


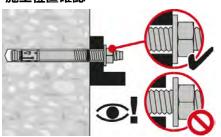


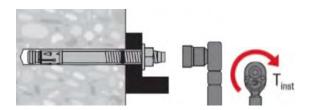
ダイヤモンドコア穿孔 (M8, M10, M12, M16, M20, M24)

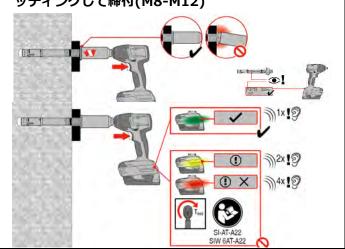
1. コア穿孔


2. 流水清掃


エアーによる孔内清掃


4a. ハンマーでアンカー挿入


4b. セッティングツール HS-SC でアンカー挿入



施工位置確認

5b. インパクトレンチ専用トルク管理アダプターをセ 6a. 校正済トルクレンチで所定のトルク締付 (M8-M24) ッティングして締付(M8-M12)

HSA ウェッジ式締付方式金属系アンカー

アンカー		特徴
	HSA	-迅速で容易な施工方法
	HSA-F	-インパクトレンチと専用トルクバーでのト
	HSA-R	ルク管理施工(ETA欧州認証取得済)
	HSA-R2	-小さいヘリあき/アンカーピッチに対応
	(M6-M20)	-高耐力
		-取付物厚さに応じた3 種類の埋込み長さ
_		-ダイヤモンド穿孔可(M12,M16,M20)
		-アンカー先行設置および現物合わせ施工の
	HSA-BW	いずれにも対応
	(M6-M20)	-木材固定用など長いサイズも用意

HSA 炭素鋼 HSA-F 炭素鋼 溶融亜鉛めっき(≥35μm) HSA-R ステンレス鋼

ホロービット 小さいへりあき/

アンカーピッチ

穿孔

ETA 認証

CE 適合

PROFIS アンカ

設計ソフト対応

耐腐蝕性有

認証 / 証明書

ハンマー

ドリル穿孔

ダイアモンド

コア穿孔

種類	機関 / 研究所	No. / 発行年月日
European technical assessment	DIBt, Berlin	ETA-11/0374 / 2016-08-08

a) このセクションにおける全てのデータは2016年8月8日発行のETA-11/0374に基づいています。

静的/準静的荷重 (単体アンカー)

本項における全てのデータは下記条件による:

- 所定のアンカー施工(施工条件・手順参照)
- へりあき/アンカーピッチの影響がない
- 鋼材破壊
- 最少母材厚
- コンクリート圧縮強度(C20/25): fck,cube = 25 N/mm² (JIS 規格 Fc≒21 N/mm² 相当)

有効埋込み長

アンカーサイズ				М6			M8			M10	
有効埋込み長	h _{ef}	[mm]	30	40	60	30	40	70	40	50	80
アンカーサイズ				M12			M16			M20	
有効埋込み長	h _{ef}	[mm]	50	65	100	65	80	120	75	100	115

基準耐力

アンカーサイス	ζ			М6			M8			M10	
有効埋込み長	h _{ef}	[mm]	30	40	60	30	40	70	40	50	80
引張	HSA, HSA-BW		6,0	7,5	9,0	8,3	12,8	16,0	12,8	17,9	25,0
N _{Rk}	HSA-R2, HSA-R	[kN]	6,0	7,5	9,0	8,3	12,8	16,0	12,8	17,9	25,0
T KK	HSA-F		6,0	7,5	9,0	8,3	12,8	15,9	12,8	17,9	25,0
せん断	HSA, HSA-BW		6,5	6,5	6,5	8,3	10,6	10,6	18,9	18,9	18,9
V _{Rk}	HSA-R2, HSA-R	[kN]	7,2	7,2	7,2	8,3	12,3	12,3	22,6	22,6	22,6
▼ KK	HSA-F		6,5	6,5	6,5	8,3	10,6	10,6	18,9	18,9	18,9
アンカーサイス	ζ			M12			M16			M20	
有効埋込み長	h _{ef}	[mm]	50	65	100	65	80	120	75	100	115
引張	HSA, HSA-BW		17,9	26,5	35,0	26,5	36,1	50,0	32,8	50,5	62,3
N _{Rk}	HSA-R2, HSA-R	[kN]	17,9	26,5	35,0	26,5	36,1	50,0	32,8	50,5	62,3
T KK	HSA-F		17,9	26,5	35,0	26,5	36,1	50,0	32,8 b)	50,5 ^{b)}	62,3 b)
せん断	HSA, HSA-BW		29,5	29,5	29,5	51,0	51,0	51,0	65,6	85,8	85,8
V _{Rk}	HSA-R2, HSA-R	[kN]	29,3	29,3	29,3	56,5	56,5	56,5	65,6	91,9	91,9
V RK	HSA-F		29,5	29,5	29,5	51,0	51,0	51,0	65,6 ^{b)}	85,8 ^{b)}	$85,8^{b)}$

b) ヒルティ社内データによる

設計耐力

	- "			MC			MO			1440	
アンカーサイス	(М6			М8			M10	
有効埋込み長	h _{ef}	[mm]	30	40	60	30	40	70	40	50	80
引張	HSA, HSA-BW		4,0	5,0	6,0	5,5	8,5	10,7	8,5	11,9	16,7
אלול N _{Rd}	HSA-R2, HSA-R	[kN]	4,0	5,0	6,0	5,5	8,5	10,7	8,5	11,9	16,7
Rd	HSA-F		4,0	5,0	6,0	5,5	8,5	10,7	8,5	11,9	16,7
せん断	HSA, HSA-BW		5,2	5,2	5,2	5,5	8,5	8,5	15,1	15,1	15,1
V _{Rd}	HSA-R2, HSA-R	[kN]	5,5	5,8	5,8	5,5	9,8	9,8	18,1	18,1	18,1
V Ka	HSA-F		5,2	5,2	5,2	5,5	8,5	8,5	15,1	15,1	15,1
アンカーサイス	₹			M12			M16			M20	
有効埋込み長	h _{ef}	[mm]	50	65	100	65	80	120	75	100	115
引張	HSA, HSA-BW		11,9	17,6	23,3	17,6	24,1	33,3	21,9	33,7	41,5
אנוכ N _{Rd}	HSA-R2, HSA-R	[kN]	11,9	17,6	23,3	17,6	24,1	33,3	21,9	33,7	41,5
I Rd	HSA-F		11,9	17,6	23,3	17,6	24,1	33,3	21,9 b)	33 , 7 b)	41,5 b)
せん断	HSA, HSA-BW		23,6	23,6	23,6	40,8	40,8	40,8	43,7	68,6	68,6
V _{Rd}	HSA-R2, HSA-R	[kN]	23,4	23,4	23,4	45,2	45,2	45,2	43,7	73,5	73,5
▼ ка	HSA-F		23,6	23,6	23,6	40,8	40,8	40,8	43,7 b)	68,6 b)	68,6 b)

b) ヒルティ社内データによる

許容安全荷重 a)

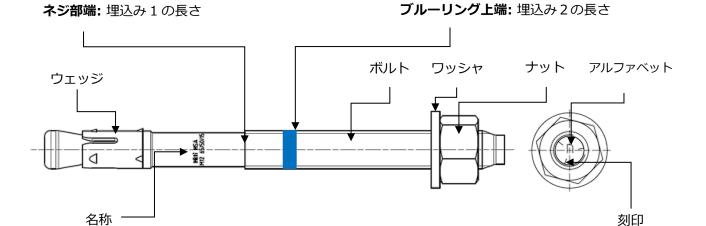
アンカーサイス	ζ			М6			M8			M10	
有効埋込み長	h _{ef}	[mm]	30	40	60	30	40	70	40	50	80
引張	HSA, HSA-BW		2,9	3,6	4,3	4,0	6,1	7,6	6,1	8,5	11,9
N _{rec}	HSA-R2, HSA-R	[kN]	2,9	3,6	4,3	4,0	6,1	7,6	6,1	8,5	11,9
rec	HSA-F		2,9	3,6	4,3	4,0	6,1	7,6	6,1	8,5	11,9
せん断	HSA, HSA-BW		3,7	3,7	3,7	4,0	6,1	6,1	10,8	10,8	10,8
V _{rec}	HSA-R2, HSA-R	[kN]	4,0	4,1	4,1	4,0	7,0	7,0	12,9	12,9	12,9
▼ rec	HSA-F		3,7	3,7	3,7	4,0	6,1	6,1	10,8	10,8	10,8
アンカーサイス	ζ			M12			M16			M20	
有効埋込み長	h_{ef}	[mm]	50	65	100	65	80	120	75	100	115
引張	HSA, HSA-BW		8,5	12,6	16,7	12,6	17,2	23,8	15,6	24,0	29,7
N _{rec}	HSA-R2, HSA-R	[kN]	8,5	12,6	16,7	12,6	17,2	23,8	15,6	24,0	29,7
rec	HSA-F		8,5	12,6	16,7	12,6	17,2	23,8	15,6 b)	24,0 b)	29,7 b)
せん断	HSA, HSA-BW		16,9	16,9	16,9	29,1	29,1	29,1	31,2	49,0	49,0
V _{rec}	HSA-R2, HSA-R	[kN]	16,7	16,7	16,7	32,3	32,3	32,3	31,2	52,5	52,5
▼ rec	HSA-F		16,9	16,9	16,9	29,1	29,1	29,1	31,2 b)	49,0 b)	49,0 b)

- a) 部分安全係数は、荷重の種類ごと、国ごとの規定により決められる係数で、ここではγ=1,4を採用している。
- b) ヒルティ社内データによる

材料

機械的特性

アンカーサイズ			М6	M8	M10	M12	M16	M20
引張強度	HSA, HSA-BW, HSA-F	[N/mm2]	650	580	650	700	650	700
$f_{uk,thread}$	HSA-R2, HSA-R	[14/11111-]	650	560	650	580	600	625
降伏点強度	HSA, HSA-BW, HSA-F	[N/mm²]	520	464	520	560	520	560
$f_{yk,thread}$	HSA-R2, HSA-R	[14/11111-]	520	448	520	464	480	500
応力断面積 A _s		[mm²]	20,1	36,6	58	84,3	157	245
断面係数 W		[mm³]	12,7	31,2	62,3	109,2	277,5	540,9
曲げ抵抗 M ⁰ _{Rk,s}	HSA, HSA-BW, HSA-F	[Nm]	9,9	21,7	48,6	91,7	216,4	454,4
μηνν μένιλι Ι*Ι Rk,s	HSA-R2, HSA-R	נואווון	9,9	21	48,6	76	199,8	405,7


材質

名称	部位	材質、表面処理
HSA	ボルト	電気亜鉛めっき (≥5 µm)
HSA-BW	拡張スリーブ	電気亜鉛めっき(≥5 µm)
(炭素鋼)	ワッシャー	電気亜鉛めっき(≥5 µm)
(//(ച))	ナット	強度区分 8, 電気亜鉛めっき (≥5 μm)
	ボルト	ステンレス鋼 A2, 1.4301
HSA-R2	拡張スリーブ	ステンレス鋼 A2
(ステンレス鋼)	ワッシャー	ステンレス鋼 A2
	ナット	ステンレス鋼 A2;
	ボルト	ステンレス鋼 A4, 1.4401 or 1.4362
HSA-R	拡張スリーブ	ステンレス鋼 A2
(ステンレス鋼)	ワッシャー	ステンレス鋼 A4
	ナット	ステンレス鋼 A4;
	ボルト	ステンレス鋼 A2
HSA-F		溶融亜鉛めっき(≥42 µm)
(炭素鋼)	拡張スリーブ	ステンレス鋼 A2
(/)(기(의)	ワッシャー	溶融亜鉛めっき(≥42 µm)
	ナット	強度区分 8, 溶融亜鉛めっき (≥42 μm)

ワッシャー寸法

アンカーサイズ			М6	M8	M10	M12	M16	M20
内径 d ₁								
HSA, HSA-R2, HSA-R, HSA-F	d_1	[mm]	6,4	8,4	10,5	13,0	17,0	21
HSA-BW	d_1	[mm]	6,4	8,4	10,5	13,0	17,0	22
外径 d ₂								
HSA, HSA-R2, HSA-R, HSA-F	d ₂	[mm]	12,0	16,0	20,0	24,0	30,0	37,0
HSA-BW	d_2	[mm]	18,0	24,0	30,0	37,0	50,0	60,0
厚さ h								
HSA, HSA-R2, HSA-R, HSA-F	h	[mm]	1,6	1,6	2,0	2,5	3,0	3,0
HSA-BW	h	[mm]	1,8	2,0	2,5	3,0	3,0	4,0

製品仕様とアンカー識別方法:

例)

Hilti HSA-R アンカー名称 - 種類

アンカーサイズ・埋込み長さ123に応じた取付物厚(mm) M12 65/50/15

150 技術マニュアル: Feb-19

刻印

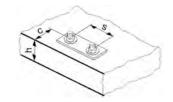
鋼材の識別

種別	HSA, HSA-BW, HSA-F	HSA-R2	HSA-R
	(炭素鋼)	(ステンレス鋼, A2)	(ステンレス鋼, A4)
鋼材の識別			
	アルファベットに	アルファベットに	アルファベットに
	刻印無	2 か所の刻印	3 か所の刻印

アンカー長識別のアルファベット刻印と標準取付物 t_{fix}

種類		HSA,	HSA-BW, HSA	-R2, HSA-R, H	SA-F	
サイズ	M6	M8	M10	M12	M16	M20
h _{nom} [mm]	37 / 47 / 67	39 / 49 / 79	50 / 60 / 90	64 / 79 / 114	77 / 92 / 132	90 / 115 / 130
刻印 t _{fix}	$t_{fix,1}/t_{fix,2}/t_{fix,3}$	$t_{fix,1}/t_{fix,2}/t_{fix,3}$	$t_{fix,1}/t_{fix,2}/t_{fix,3}$	$t_{fix,1}/t_{fix,2}/t_{fix,3}$	$t_{fix,1}/t_{fix,2}/t_{fix,3}$	$t_{\text{fix,1}}/t_{\text{fix,2}}/t_{\text{fix,3}}$
z	5/-/-	5/-/-	5/-/-	5/ -/-	5/-/-	5/-/-
У	10/-/-	10/-/-	10/-/-	10/-/-	10/-/-	10/-/-
x	15/5/-	15/5/-	15/5/-	15/-/-	15/-/-	15/-/-
w	20/10/-	20/10/-	20/10/-	20/5/-	20/5/-	20/-/-
V	25/15/-	25/15/-	25/15	25/10/-	25/10/-	25/-/-
u	30/20/-	30/20/-	30/20/-	30/15/-	30/15/-	30/5/-
t	35/25/5	35/25/-	35/25/-	35/20/-	35/20/-	35/10/-
S	40/30/10	40/30/-	40/30/-	40/25/-	40/25/-	40/15/-
r	45/35/15	45/35/5	45/35/5	45/30/-	45/30/-	45/20/5
q	50/40/20	50/40/10	50/40/10	50/35/-	50/35/-	50/25/10
р	55/45/25	55/45/15	55/45/15	55/40/5	55/40/-	55/30/15
0	60/50/30	60/50/20	60/50/20	60/45/10	60/45/5	60/35/20
n	65/55/35	65/55/25	65/55/25	65/50/15	65/50/10	65/40/25
m	70/60/40	70/60/30	70/60/30	70/55/20	70/55/15	70/45/30
l	75/65/45	75/65/35	75/65/35	75/60/25	75/60/20	75/50/35
k	80/70/50	80/70/40	80/70/40	80/65/30	80/65/25	80/55/40
j	85/75/55	85/75/45	85/75/45	85/70/35	85/70/30	85/60/45
i	90/80/60	90/80/50	90/80/50	90/75/40	90/75/35	90/65/50
h	95/85/65	95/85/55	95/85/55	95/80/45	95/80/40	95/70/55
g	100/90/70	100/90/60	100/90/60	100/85/50	100/85/45	100/75/60
f	105/95/75	105/95/65	105/95/65	105/90/55	105/90/50	105/80/65
е	110/100/80	110/100/70	110/100/70	110/95/60	110/95/55	110/85/70
d	115/105/85	115/105/75	115/105/75	115/100/65	115/100/60	115/90/75
С	120/110/90	120/110/80	120/110/80	125/110/75	120/105/65	120/95/80
b	125/115/95	125/115/85	125/115/85	135/120/85	125/110/70	125/100/85
a	130/120/100	130/120/90	130/120/90	145/130/95	135/120/80	130/105/90
aa	-	-	-	155/140/105	145/130/90	-
ab	-	-	-	165/150/115	155/140/100	-
ac	-	-	-	175/160/125	165/150/110	-
ad	-	-	-	180/165/130	190/175/135	-
ae	-	-	-	230/215/180	240/225/185	-
af	-	-	-	280/265/230	290/275/235	-
ag	- つ涂りつごしにもっ	-	-	330/315/280	340/325/285	-

標準品は灰色の塗りつぶしになっています。その他のアンカー長製品についてはヒルティへお問い合わせください


施工

施工詳細情報

アンカーサイズ			M6				M8			M10		
埋込み長	h _{nom}	[mm]	37	47	67	39	49	79	50	60	90	
最小母材厚	h _{min}	[mm]	100	100	120	100	100	120	100	120	160	
最小アンカーピッチ	S _{min}	[mm]	35	35	35	35	35	35	50	50	50	
最小へりあき	C _{min}	[mm]	35	35	35	40	35	35	50	40	40	
穿孔径(ビットの呼び径)	d_0	[mm]		6			8			10		
*1	d _{cut} ≤	[mm]		(6,4)			(8,45)			(10,45))	
穿孔長	$h_1 \ge$	[mm]	42	52	72	44	54	84	55	65	95	
取付物の許容下穴径	d _r ≤	[mm]		7			9			12		
トルク締付	T_{inst}	[Nm]		5			15			25		
ナット二面幅	SW	[mm]		10		13			17			
アンカーサイズ				M12			M16			M20		
アンカーサイズ 埋込み長	h _{nom}	[mm]	64	M12 79	114	77	M16 92	132	90	M20	130	
	h _{nom}	[mm]	64 100		114 180	77 140		132 180	90 160		130 220	
埋込み長				79			92			115		
埋込み長 最小母材厚	h_{min}	[mm]	100	79 140	180	140	92 160	180	160	115 220	220	
埋込み長 最小母材厚 最小アンカーピッチ	h _{min} S _{min}	[mm]	100 70	79 140 70	180 70	140 90	92 160 90	180 90	160 195	115 220 175	220 175	
埋込み長最小母材厚最小アンカーピッチ最小へりあき	h _{min} S _{min} C _{min}	[mm] [mm]	100 70	79 140 70 65	180 70	140 90	92 160 90 75	180 90	160 195 130	115 220 175 120	220 175 120	
埋込み長 最小母材厚 最小アンカーピッチ 最小へりあき 穿孔径 (ビットの呼び径) *1 穿孔長	$\begin{array}{c} h_{min} \\ s_{min} \\ c_{min} \\ d_0 \end{array}$	[mm] [mm] [mm]	100 70	79 140 70 65 12	180 70	140 90	92 160 90 75 16	180 90	160 195 130	115 220 175 120 20	220 175 120	
埋込み長 最小母材厚 最小アンカーピッチ 最小へりあき 穿孔径 (ビットの呼び径) *1 穿孔長 取付物の許容下穴径	$\begin{array}{c} h_{min} \\ s_{min} \\ c_{min} \\ d_0 \\ d_{cut} \leq \end{array}$	[mm] [mm] [mm] [mm]	100 70 70	79 140 70 65 12 (12,5)	180 70 55	140 90 80	92 160 90 75 16 (16,5)	180 90 70	160 195 130	115 220 175 120 20 (20,55) 123 22	220 175 120	
埋込み長 最小母材厚 最小アンカーピッチ 最小へりあき 穿孔径 (ビットの呼び径) *1 穿孔長	$\begin{array}{c} h_{min} \\ S_{min} \\ C_{min} \\ d_0 \\ d_{cut} \leq \\ h_1 \geq \end{array}$	[mm] [mm] [mm] [mm] [mm]	100 70 70	79 140 70 65 12 (12,5) 87	180 70 55	140 90 80	92 160 90 75 16 (16,5)	180 90 70	160 195 130	115 220 175 120 20 (20,55)	220 175 120	

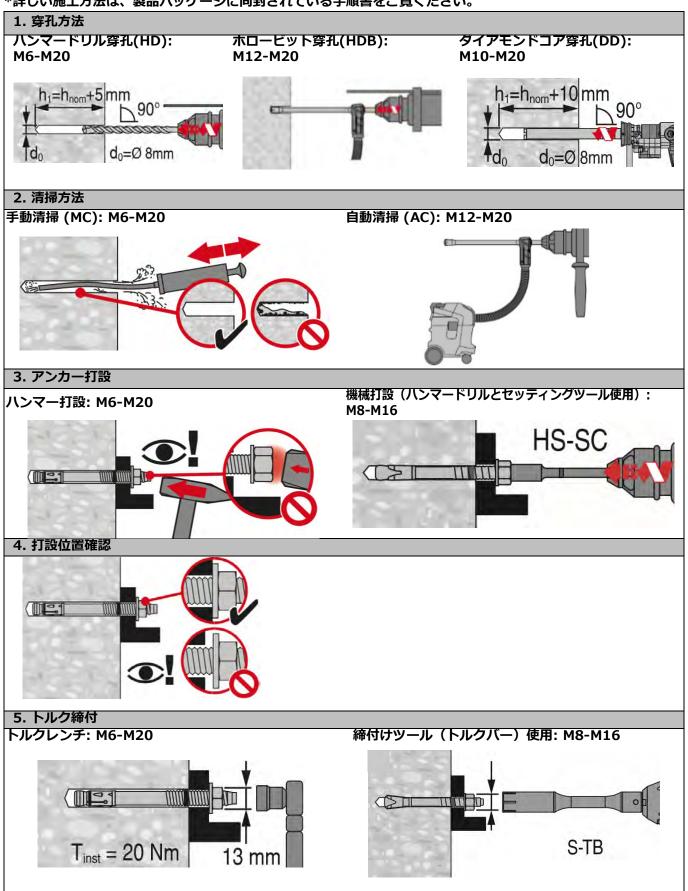
注意)基準アンカーピッチ・へりあきより、小さいアンカーピッチ・へりあきの場合は、設計荷重を低減すること

*1 付録の dcut 説明をご参照ください。

推奨施工工具

アンカーセ	ナイズ	M6	M8	M10	M12	M16	M20			
ロータリー	-ハンマードリル		TE2 - TE16							
その他のコ	具	,	ハンマー, トルクレンチ, ダストポンプ(ブロワー)							
機械トルク	7締付け									
トルクバー	_	-		S-TB	HSA		-			
インパクト	トレンチ	-		ilti SIW 14 ilti SIW 22		Hilti SIW 22T-A	-			
スピード	HSA, HSA-BW, HSA-F	-	-	_	3	_1)	-			
	HSA-R2, HSA-R	-	3	3	3 - ′		-			
施工時間	t _{set} [秒]	-	- 4							

¹⁾ インパクトレンチは所定のスピードで使用する。


施工条件

アンカーサイズ				М6			M8			M10	
埋込み長	h _{nom}	[mm]	37	47	67	39	49	79	50	60	90
有効埋込み長	h _{ef}	[mm]	30	40	60	30	40	70	40	50	80
割裂破壊を考慮した 基準アンカーピッチ	S _{cr,sp}	[mm]	100	120	130	130	180	200	190	210	290
割裂破壊を考慮した 基準へりあき	C _{cr,sp}	[mm]	50	60	65	65	90	100	95	105	145
コンクリートコーン破壊を考慮した 基準アンカーピッチ	S _{cr,N}	[mm]	90	120	180	90	120	210	120	150	240
コンクリートコーン破壊を考慮した 基準へりあき	C _{cr,N}	[mm]	45	60	90	45	60	105	60	75	120
アンカーサイズ				M12			M16			M20	
埋込み長	h _{nom}	[mm]	64	79	114	77	92	132	90	115	130
埋込み長 有効埋込み長	h _{nom}	[mm]	64 50	79 65	114 100	77 65	92 80	132 120	90 75	115 100	130 115
有効埋込み長 割裂破壊を考慮した 基準アンカーピッチ											
有効埋込み長 割裂破壊を考慮した 基準アンカーピッチ 割裂破壊を考慮した 基準へりあき	h _{ef}	[mm]	50	65	100	65	80	120	75	100	115
有効埋込み長 割裂破壊を考慮した 基準アンカーピッチ 割裂破壊を考慮した	h _{ef}	[mm]	50 200	65 250	100 310	65 230	80 280	120 380	75 260	100 370	115 400

施工手順

*詳しい施工方法は、製品パッケージに同封されている手順書をご覧ください。

基準荷重データ レンガ用途(単体アンカー対象)

本項における全てのデータは下記条件による。

- 荷重値は TE ロータリーハンマーの打撃モードで穿孔された孔に適用
- 所定の施工手順(使用および施工手順を参照)
- 中空/断面積 比が目地モルタル部の面積の 15%を超えない場合
- 孔の周りの brim area は少なくとも 70mm
- へりあき、アンカーピッチ、その他の影響は下記を参照
- 本項における全てのデータはヒルティ社内データによる

公称埋込み長

アンカーサイズ			6	8	10
公称埋込み長	h _{nom}	[mm]	55	60	75

許容安全荷重 HUS3

			6	8	10				
アンカーサイ	゚゙ズ		A, H, I, C, P, PS, PL	H, C, HF	H, C, HF				
		E E a a a a a a a a a a a a a a a a a a	F _{rec} 引張・せん断荷重						
		≥ 8	0,6	-	-				
	レンガ 1 Mz	≥ 10	0,7	-	-				
	12/2,0 DIN 105 /	≥ 12	0,8	1,1	1,4				
	EN 771-1	≥ 16	0,9	-	-				
		≥ 20	0,9	1,6	2,0				
	レンガ2 Mz	≥ 8	0,8	-	-				
	12/2,0	≥ 10	0,9	-	-				
	DIN	≥ 12	1,0	1,3	1,4				
	106/EN 771-2	≥ 16	1,1	-	-				
		≥ 20	1,2	1,7	2,1				
a	ALC PPW 6-0,4 DIN 4165/EN 771-4	≥ 6	0,4	0,7	0,9				

レンガ造および組積造でのアンカー留付け位置

へりあきとアンカーピッチの影響

- HUS3 アンカーの技術データは MZ 12、KS 12 と PPW 6 の基準とする荷重であり、レンガには様々な種 類、また国ごとに違いがあることから、現場において現物アンカー性能試験を実施し、その技術データを 使用することを推奨している。
- HUS3 アンカーは、図のようにレンガの中心に留付け、試験を実施している。レンガや中空レンガの間の 目地モルタル部での試験は行われていないが、荷重低減が想定される。 アンカー位置を指定できないレンガ壁の場合、すべてのアンカーを試験し検証することが望ましい。
- へりあき (Mz と KS) ≥ 200mm
- へりあき (ALC) ≥ 170mm
- 水平方向と鉛直方向の目地モルタルまでの最小距離 (cmin) は次ページの図を参照。
- レンガ単体の最小アンカーピッチ (s_{min}) ≥ 80 mm

HUS3 ねじ固定式金属系アンカー

アンカー種類 特長 - 生産性を高める - 従来のアンカーより小 HUS3-H さい穿孔で少ない作業項目による施工 (6-14)- ETA 欧州認証(ひび割れを想定する/想 定しないコンクリート) HUS3-HF - ETA 耐震認証 C1/C2 (8-14)- ETA 締付調整アジャスタビリティ認証 (緩める-再締付) HUS3-C (6-14)- 高耐力 - 小さいへりあき・アンカーピッチ HUS3-A - abZ (DIBt) フレッシュコンクリート (6) (f_{ck, cube} = 10/15/20 Nmm²) での仮設 再利用のための認証 HUS3-P (6) - 汎用性をもつ穿孔長 - HUS3-HF 耐腐食を向上させる多層コー HUS3-PL ティング (6) - 現物合わせ施工対応 HUS3-PS (6) HUS3-I (6)**HUS3-I Flex** (6)

母材 荷重条件

その他

ひび割れを想定しない ひび割れを想定した コンクリート

コンクリート

レンガ

ALC

静的 / 準静的

耐震認証 ETA-C1,C2

耐火

施工条件

小さいへりあき/ アンカーピッチ

欧州技術認証 **ETA**

CE 適合製品

PROFIS Anchor 設計ソフト対応

DIBt 再利用性認証

認証 / 証明書

種類	機関 / 研究所	No. / 発行年月日
ETA 欧州技術認証	DIBt, Berlin	ETA-13/1038 / 2018-04-27
耐火試験報告書	DIBt, Berlin	ETA-13/1038 / 2018-04-27

本項に記載のすべてのデータは ETA-13/1038: 2018-04-27 発行に準拠

静的/準静的荷重(単体アンカー対象)

本項における全てのデータは下記条件による。

- 所定のアンカー施工 (施工条件・手順参照)- へりあきやアンカーピッチの影響がない
- 鋼材破壊
- 最小母材厚
- コンクリート圧縮強度 C 20/25, f_{ck,cube} = 25 N/mm² (JIS 規格 F_c ÷ 21N/mm² 相当)

埋込み長

アンカーサイズ			5	8			10			14		
種類	HUS3-	H,C,A, I,I-flex		H,C,HF		H,C,HF			Н,	HF	Н	
公称埋込み長	h_{nom}	h _{nom1}	h _{nom2}	h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}
□ 五州中王区の7天	[mm]	55	55	50	60	70	55	75	85	65	85	115

基準耐力

アンカーサイズ		6 8					10		14			
種類	HUS3-	H,C,A, I,I-flex	P,PS, PL	H,C,HF			H,C,HF			Н,	HF	Н
ひび割れを想定しない	いコンクリ	ノート										
引張 N _{Rk}	[kN]	9,0	7,5	9,0	12,0	16,0	12,0	20,0	27,8	17,5	27,3	44,4
せん断 V _{Rk}	[kN]	12,5	12,5	12,8	19,0	22,0	13,5 30,0 34,0			35,0	54,5	62,0
ひび割れを想定した:	コンクリー	- ト										
引張 N _{Rk}	[kN]	6,0	6,0	6,0	9,0	12,0	9,7	16,2	19,8	12,5	19,4	31,7
せん断 V _{Rk}	[kN]	12,5	12,5	9,1	19,0	22,0	9,7	30,0	34,0	24,9	38,9	62,0

設計耐力

アンカーサイズ		•	6 8		10			14				
Туре	HUS3-	H,C,A, I,I-flex	P,PS, PL	H,C,HF			H,C,HF			H,C,HF H,HF		Н
ひび割れを想定しない	ハコンクリ	ート										
引張 N _{Rd}	[kN]	5,0	4,2	6,0	8,0	10,7	8,0	13,3	18,5	11,7	18,2	29,6
せん断 V _{Rd}	[kN]	8,3	8,3	8,5	<i>12,7</i>	14,7	9,0	20,0	22,7	23,3	36,3	41,3
ひび割れを想定したこ	コンクリー	<u> </u>										
引張 N _{Rd}	[kN]	3,3	3,3	4,0	6,0	8,0	6,4	10,8	13,2	8,3	13,0	21,1
せん断 V _{Rd}	[kN]	8,3	8,3	6,1	12,7	14,7	6,4	20,0	22,7	16,6	25,9	41,3

許容安全荷重 a)

アンカーサイズ		(5	8			10				14		
種類	HUS3-	H,C,A, I,I-flex	P,PS, PL	H,C,HF			H,C,HF			H,C,HF H,C,HF H,HF		HF	Н
ひび割れを想定しない	ハコンクリ	ート											
引張 N _{Rec}	[kN]	3,6	3,0	4,3	5,7	7,6	5,7	9,5	13,2	8,3	13,0	21,2	
せん断 V _{Rec}	[kN]	6,0	6,0	6,1	9,0	10,5	6,5	14,3	16,2	16,6	26,0	29,5	
ひび割れを想定したこ	コンクリー	<u> </u>											
引張 N _{Rec}	[kN]	2,4	2,4	2,9	4,3	5,7	4,6	7,7	9,4	5,9	9,3	15,1	
せん断 V _{Rec}	[kN]	6,0	6,0	4,3	9,0	10,5	4,6	14,3	16,2	11,9	18,5	29,5	

a) 部分安全係数は、荷重の種類ごと、国ごとの規定により決められる係数で、ここでは $\gamma=1.4$ を採用している。

地震荷重(単体アンカー対象)

本項における全てのデータは下記条件による。

- 所定のアンカー施工 (施工条件・手順参照)へりあきやアンカーピッチの影響がない
- 鋼材破壊
- 最小母材厚
- コンクリート圧縮強度 C 20/25, $f_{ck,cube}$ =25 N/mm² (JIS 規格 F_c =21N/mm² 相当) α_{gap} = 1,0 (ヒルティフィリングセット使用時)

埋込み長 耐震認証 C2 による

アンカーサイズ			8	10	14
種類	Н	US3 -	Н	Н	Н
公称埋込み長	h	[mm]	h _{nom3}	h _{nom3}	h _{nom3}
五种建 <u>区的最</u>	n _{nom}	[mm]	-	85	115
有効埋込み長	h _{eff}	[mm]	-	67,1	91,8

基準耐力 耐震認定 C2 の場合

アンカーサイズ		8	10	14							
ヒルティ フィリングセット使用 (α _{gap} = 1,0)											
種類	HUS3 -	H, HF	H, HF	H, HF							
引張 N _{Rd,seis}	[kN]	-	9,4	17,7							
せん断 V _{Rd,seis}		-	25,6	46,6							
ヒルティ フィリングセット使用	しない (a _{gap} = (),5)									
種類	HUS3 -	H, HF	H, HF, C	H, HF							
引張 N _{Rd,seis}	[kN]	-	9,4	17,7							
せん断 V _{Rd,seis}	[KIV]	-	8,9	17,2							

設計耐力 耐震認定 C2 の場合

アンカーサイズ		8	10	14							
ヒルティ フィリングセット使用 (agap = 1,0)											
種類	HUS3 -	H, HF	H, HF	H, HF							
引張 N _{Rk,seis}	[kN]	-	6,3	11,8							
せん断 V _{Rk,seis}		-	17,1	31,1							
ヒルティ フィリングセット使用し	ンない (α _{gap} = 0),5)									
種類	HUS3 -	H, HF	H, HF, C	H, HF							
引張 N _{Rk,seis}	[kN]	-	6,3	11,8							
せん断 V _{Rk,seis}		-	5,9	11,5							

埋込み長 耐震認証 C1 による

アンカーサイズ			8	1	.0	14	
種類	HUS3 -	1	Н	Н		Н	
公称埋込み長	h _{nom} [mm]	h _{nom2}	h _{nom3}	h _{nom2}	h _{nom3}	h _{nom2}	h _{nom3}
	110111 []	60	70	75	85	85	115
有効埋込み長	h _{ef} [mm]	46,4	54,9	58,6	67,1	66,3	91,8

基準耐力 耐震認定 C1 の場合

アンカーサイズ		8	3	1	0	1	4			
ヒルティ フィリングセット使用 (a _{gap} = 1,0)										
種類	HUS3 -	Н,	HF	Н,	HF	H, HF	Н			
引張 N _{Rk,seis}	[kN]	9,0	12,0	13,8	16,8	16,5	26,9			
せん断 V _{Rk,seis}		11,9	11,9	16,8	17,7	22,5	34,5			
ヒルティ フィリングセット使用しな	にい (a _{gap} = 0	,5)								
種類	HUS3 -	Н,	HF	Н, Н	IF, C	H, HF				
引張 N _{Rk,seis}	[kN]	9,0	12,0	13,7	16,8	16,5	26,9			
せん断 V _{Rk,seis}	[KIN]	6,0	6,0	8,4	8,9	11,3	17,3			

設計耐力 耐震認定 C1 の場合

アンカーサイズ		8	3	1	0	14			
ヒルティ フィリングセット使用(a _{gap} = 1,0)									
種類	HUS3 -	Н,	HF	Н,	HF	H, HF	Н		
引張 N _{Rd,seis}	[kN]	6,0	8,0	9,2	11,2	11,0	17,9		
せん断 V _{Rd,seis}		7,9	7,9	11,2	11,8	15,0	23,0		
ヒルティ フィリングセット使用した	ない (a _{gap} = 0),5)							
種類	HUS3 -	Н,	HF	Н, Н	IF, C	H, HF			
引張 N _{Rd,seis}	[kN]	6,0	8,0	9,1	11,2	11,0	17,9		
せん断 V _{Rd,seis}	[KN]	4,0	4,0	5,6	5,9	7,5	11,5		

耐火

本項における全てのデータは下記条件による。

- 所定のアンカー施工 (施工条件・手順参照)
- へりあきやアンカーピッチの影響がない
- 最小母材厚
- 詳しい耐火データは ETA-13/1038 参照

許容安全荷重 加熱時 1)

アンカーサイズ							6		
種類			HUS3-	Н	С	Α	I / I-Flex	Р	PS / PL
公称埋込み長		h _{nom}	[mm]				55		
鋼材破壊 引張·	せん断 (F _{Rec,}	s,fi =N _{Rec,s}	$_{,fi} = V_{Rec,s,}$	_{fi})					
	R30	$F_{Rec,s,fi}$	[kN]				1,6		
許容安全引張・	R120	$F_{Rec,s,fi}$	[kN]				0,7		
せん断荷重	R30	M ⁰ _{Rec,s,fi}	[Nm]				1,4		
	R120	M ⁰ _{Rec,s,fi}	[Nm]				0,6		
付着破壊									
許容安全荷重	R30 to R90	$N_{Rec,p,fi}$	[kN]				1,5		
計合女生何里	R120	$N_{Rec,p,fi}$	[kN]				1,2		
コンクリートコー	-ン破壊								
へりあき ²⁾	R30 to R120	C _{cr,fi}	[mm]			2	2 h _{ef}		
アンカーピッチ	R30 to R120	S _{cr,fi}	[mm]			2	2c _{cr,fi}		
コンクリート局所	破壊								
	R30 to R120	k	[-]				1,5		
湿潤コンクリート				ım 埋込み		る		 	+ -

¹⁾ 加熱時の許容安全荷重は、加熱時の荷重のために安全係数 $\gamma_{Ms, fire} = 1,0$ を、荷重のために部分安全係数 $\gamma_{Ms, fire} = 1,0$ を考慮する。 荷重の ための部分安全係数は国ごとの国ごとの規定により決められる係数。

²⁾ 複数方向からの加熱が考えられる場合は、300mm以上の最小へりあきを考慮する。

許容安全荷重 加熱時 1)

アンカーサイ	イズ				8			10		14		
種類			HUS3-		H, HF			H, HF			H, HF	
公称埋込み		h	[mm]	h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}
五州连区0万	X	h_{nom}	נוווווו	50	60	70	55	75	85	65	85	115
鋼材破壊	川張・せん	断 (F _{Rec,s,}	_{fi} = N _{Rec,s,}	_{fi} =V _{Rec}	,s,fi)							
	R30	$F_{Rec,s,fi}$	[kN]	3,2	3,5	3,8	6,1	6,	,2	10,4	10),6
許容安全引張・	R120	$F_{Rec,s,fi}$	[kN]	1,2	1,2	1,5	2,4	2,	,5	4,0	4,	,3
せん断荷重	R30	$M^0_{Rec,s,fi}$	[Nm]	3,8	4,1	4,4	9,1	9,	,2	20,4	20),6
	R120	M ⁰ _{Rec,s,fi}	[Nm]	1,5	1,4	1,7	3,5	3,	,7	7,9	8,	,3
付着破壊												
許容安全荷重	R30 to R90	$N_{\text{Rec,p,fi}}$	[kN]	1,5	2,3	3,0	2,4	4,0	4,9	3,1	4,8	7,8
可行文土彻里	R120	$N_{\text{Rec,p,fi}}$	[kN]	1,2	1,8	2,4	1,9	3,2	3,9	2,5	3,8	6,3
コンクリート	トコーン破	壊										
基準耐力	R30 to R90	N ^{0Rec} ,p,fi	[kN]	1,8	2,6	4,0	2,0	4,7	6,6	3,0	6,4	14,4
空年 ミング	R120	$N^0_{Rec,p,fi}$	[kN	1,4	2,1	3,2	1,6	3,8	5,3	2,4	5,1	11,5
へりあき ²⁾	R30 to R120		[mm]					2 h _{ef}				
アンカーピッチ	R30 to R120	S _{cr,fi}	[mm]					2 c _{cr,fi}				
コンクリート	卜局所破壊											
	R30 to R120		[-]	1,0		,0	1,0	_		2,0		
湿潤コンクリ	ノートでは	所定の値。	り少なく	とも 30)mm 埋	込み長を	長くす	る				

¹⁾ 加熱時の許容安全荷重は、加熱時の荷重のために安全係数 $\gamma_{Ms, fire} = 1,0$ を 、荷重のために部分安全係数 $\gamma_{Ms, fire} = 1,0$ を考慮する。 荷重の ための部分安全係数は国ごとの国ごとの規定により決められる係数。

許容安全荷重 加熱時 1)

アンカーサイズ					8		10			
種類		Н	US3-		С			С		
公称埋込み長		h	[mm]	h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}	
公が達込の長		h_{nom}	[mm]	50	60	70	55	75	85	
鋼材破壊 引張・せん	斯 (F _{Rec,s,fi} =I	N _{Rec,s,fi} =	V _{Rec,s,fi})							
	R30	$F_{Rec,s,fi}$	[kN]		0,5			1,2		
許容安全引張荷重・	R120	$F_{Rec,s,fi}$	[kN]		0,2			0,6		
せん断荷重	R30	$M^0_{Rec,s}$	[Nm]		0,6			1,7		
	R120	M ⁰ _{Rec,s}	[Nm]		0,3			0,9		
付着破壊										
許容安全荷重	R30 to R90	$N_{Rec,p,fi}$	[kN]	1,5	2,3	3,0	2,4	4,0	5,0	
計合女主何里	R120	$N_{Rec,p,fi}$	[kN]	1,2	1,8	2,4	1,9	3,2	4,0	
コンクリートコーン	/破壊									
基準耐力	R30 to R90	N ⁰ _{Rec,p}	[kN]	1,8	2,6	4,0	2,0	4,7	6,6	
	R120	$N^0_{Rec,p}$	[kN]	1,5	2,1	3,2	1,6	3,8	5,3	
へりあき ²⁾	R30 to R120	C _{cr,fi}	[mm]			2 l	h _{ef}			
アンカーピッチ	R30 to R120	S _{cr,fi}	[mm]			2 c	·cr,fi			
コンクリート局所破	坡壊									
	R30 to R120	k	[-]	1,0	2	,0	1,0	2,0)	
湿潤コンクリートで	ば所定の値よ	こり少なく	くとも 3	0mm 埋込	み長を長く	(する				

¹⁾ 加熱時の許容安全荷重は、加熱時の荷重のために安全係数 $\square_{Ms,fire}=1,0$ を、荷重のために部分安全係数 $\square_{Ms,fire}=1,0$ を考慮する。 荷重のための部分安全係数は国ごとの国ごとの規定により決められる係数で、ここでは $\gamma=1.4$ を採用している。

²⁾ 複数方向からの加熱が考えられる場合は、300mm以上の最小へりあきを考慮する。

²⁾ 複数方向からの加熱が考えられる場合は、300mm以上の最小へりあきを考慮する。

材料

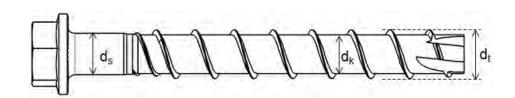
機械的特性

アンカーサイズ		6	8	10	14
種類	HUS3-	H,C,A,I, I-flex,P,PS,PL	H,C,HF	H,C,HF	H,HF
公称引張強度 fuk	[N/mm ²]	930	810	805	730
降伏強度 fyk	[N/mm ²]	745	695	690	630
応力断面 As	[mm²]	26,9	48,4	77,0	131,7
断面係数 W	[mm³]	19,6	47	95	213
曲げ抵抗 M ⁰ _{Rk,s}	[Nm]	21	46	92	187

材質

種類	材料
HUS3 - H,A,C,P,PS, PL,I,I-Flex	炭素鋼、亜鉛めっき
HUS3 - HF	炭素鋼、多層コーティング ^{a)}

a) 多層コーティングは、標準溶融亜鉛めっき 40μm より高耐食性能をもっ。


	소	
種類	形状	
HUS3-H HUS3-HF	六角頭	AUS-M Gx
HUS3-C	皿頭	1033 _C 6
HUS3-A	外ねじ	
HUS3-P	低頭	(+US-10) (6x)
HUS3-PS	低頭 (小)	\$53-P.0 67.89
HUS3-PL	低頭 (大)	() () () () () () () () () ()
HUS3-I	内ねじ	
HUS3-I Flex	外ねじ	

アンカー寸法

アンカーサイズ			6	8	10	14
種別		HUS3-	H,C,A,I, I-	H,C,HF	H,C,HF	H,HF
ねじ部外径	d _t	[mm]	7,85	10,30	12,40	16,85
軸径	d _k	[mm]	5,85	7,85	9,90	12,95
円筒部径	ds	[mm]	6,15	8,45	10,55	13,80
応力断面	As	[mm ²]	26,9	48,4	77,0	131,7

HUS3: ヒルティスクリューアンカー第3世代

H: 六角頭

10: アンカーの呼び径

45/25/15: h_{nom1}/h_{nom2}/h_{nom3} に呼応した最大取付物厚 t_{fix1}/ t_{fix2}/ t_{fix3} (Annex B3 参照).

HUS3 スクリュー全長に対する取付物厚

アンカーサイズ				(5							
公称埋込み長	[mm]			h _n	om1							
五物・主たの及	[]	55										
種類	Н	С	Α	I / I-	Р	PS / PL						
取付物厚		t_{fix1}	t _{fix2}	t _{fix1}	t _{fix2}	t _{fix1}	t _{fix2}					
	55	-	-	0	0	-	-					
	60	5	5	-	-	5	5					
	70	-	15	-	-	-	-					
	80	25	-	-	-	25	-					
スクリュー全長	100	45	-	-	-	-	-					
[mm]	120	65	-	-	-	-	-					
	135	-	-	80	-	-	-					
-	155	-	-	100	-	-	-					
	175	-	-	120	-	-	-					
	195	-	-	140	-	-	-					

HUS3-C スクリュー全長にする取付物厚

アンカーサイズ			8		10			
公称埋込み長	[mm]	h _{nom1}	h _{nom2}	h _{nom3} 70	h _{nom1}	h _{nom2}	h _{nom3}	
取付物厚		t _{fix1}	t _{fix2}	t _{fix3}	t _{fix1}	t _{fix2}	t _{fix3}	
	65	15	5	-	-	-	-	
	70	-	-	-	15	-	-	
スクリュー全長	75	25	15	-	-	-	-	
[mm]	85	35	25	15	-	-	-	
	90	-	-	-	35	15	-	
	100	-	-	-	45	25	15	

HUS3-H and HUS3-HF スクリュー全長にする取付物厚 ¹⁾

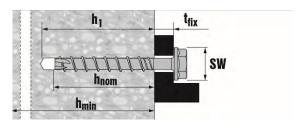
アンカーサイズ	8				10		14			
公称埋込み長	[mm]	h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}
五孙星 丛// 民	[,,,,,]	50	60	70	55	75	85	65	85	115
取付物厚		t _{fix1}	t _{fix2}	t _{fix3}	t _{fix1}	t _{fix2}	t _{fix3}	t _{fix1}	t _{fix2}	t _{fix3}
	55	5	-	-	-	-	ı	-	-	-
	60	-	-	-	5	-	-	-	-	-
	65	15	5	-	-	-	-	-	-	-
	70	-	-	-	15	-	ı	-	-	-
	75	25	15	5	-	-	-	10	-	-
7 211 - 0 =	80	-	-	-	25	5	-	-	-	-
スクリュー全長 「mm]	85	35	25	15	-	-	-	-	-	-
[[,,,,,,]	90	-	-	-	35	15	5	-	-	-
	100	50	40	30	45	25	15	35	15	
	110	-	-	-	55	35	25	-	-	-
	120	70	60	50	-	-	-	-	-	-
	130	-	-	-	75	55	45	65	45	15
	150	100	90	80	95	75	65	85	65	35

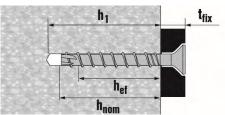
¹⁾ HUS3-HF のサイズ 14 は、 h_{nom1} と h_{nom2} のみ

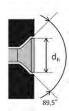
施工仕様

施工条件

アンカーサイズ						6		
種類		HUS3-	Н	С	Α	P, PS	I-Flex	PL
公称埋込み長		[mm]			h	om1		
五朴年込の民		נייייין			5	55		
穿孔径 (ビットの呼び径)	d_0	[mm]				6		
*1	$d_{cut} \leq$	[mm]			(6	,4)		
許容下穴径	$d_f \leq$	[mm]			9			10
ナット二面幅	SW	[mm]	13	-	13	-	13	-
皿頭径	$d_{h} \\$	[mm]	-	11,5			-	
トルクスサイズ	TX	-	-	30	-	30	-	30
穿孔長 (床/壁へ施工 する場合)	h₁≥	[mm]			e	55		
穿孔長 (締付調整をして施工する場合)	h₁≥	[mm]			Ţ	58		
締付トルク	T _{inst}	[mm]			2	25		


^{*1} 付録の d_{cut} 説明をご参照ください。




施工条件

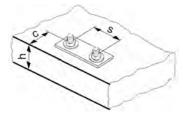
アンカーサイズ				8		10			14		
種類		HUS3-	H, HF, C			H, HF, C			H, HF		Н
公称埋込み長		[mm]	h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}
ZW-IZV/Z		[]	50	60	70	55	75	85	65	85	115
穿孔径 (ビットの呼び径)	d_0	[mm]		8			10			14	
*1	$d_{cut} \leq$	[mm]		(8,45)			(10,45)	1		(14,50)	
許容下穴径	$d_f \leq$	[mm]		12		14				18	
ナット二面幅	SW	[mm]		13			15			21	
皿頭径	d_{h}	[mm]		18			21			-	
トルクスサイズ	TX			45			50			-	
穿孔長 (床/壁へ施工 する場合)	h₁≥	[mm]	60	70	80	65	85	95	75	95	125
穿孔長 (締付調整をし て施工する場合)	h₁≥	[mm]	-	80	90	-	95	105		-	

^{*1} 付録の d_{cut} 説明をご参照ください。

標準施工工具

アンカーサイズ	6	8	10	14
	S3- H,C,A,I, I-flex,P,PS,	H C HE	H,C,HF	H,HF
ロータリーハンマードリル	TE 2 -TE 1	7	TE 2 – TE 30	
ドリルビット(レンガ)	CX 6	CX 8	CX 10	CX 14
ドリルビット(ALC)	CX 5	CX 6	CX 8	-
ソケット	S-NSD 13	/ ₂ SI-S ½" 13S	SI-S ½" 15S	SI-S ½" 21S
トルクス	TX30	S-SY TX45	S-SY TX50	-
仮設用途チェック専用ゲージ ¹⁾	-	HRG 8	HRG 10	HRG 14
セッティングツール (ひび割れあり・なし)	SIW 14 A SIW 22 A		SIW 22 A SIW 22 T-A	SIW 22 T-A
セッティングツール (レンガ、ALC)	-		SFH 22 A	
セッティングツール (中空スラブ)	SIW 14 A SIW 22 A		SIW 22 A	

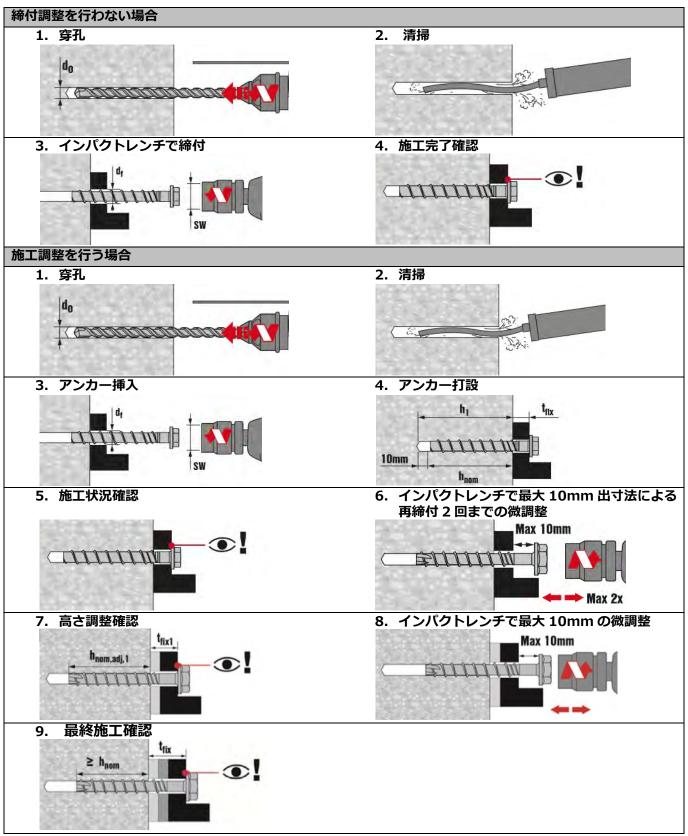
¹⁾ HUS3-H のみ



施工条件

アンカーサイズ			6	8				10		14		
種類		HUS3-	0		0		10			14		
公称埋込み長	h_{nom}	[mm]	55	50	60	70	55	75	85	65	85	115
最小母材厚	h _{min}	[mm]	100	100	100	120	100	130	140	120	160	200
最小アンカーピッチ	S _{min}	[mm]	35	50 40 c≥50	50	50	50	50	50	60	60	60
最小へりあき	C _{min}	[mm]	35	40	40	40	50	50	50	60	60	60
割裂破壊を考慮した 基準アンカーピッチ	S _{cr,sp}	[mm]	126	120	140	170	130	180	220	170	200	280
割裂破壊を考慮した 基準へりあき	C _{cr,sp}	[mm]	63	60	70	85	65	90	110	85	100	140
コンクリートコーン破壊を考慮した基準アンカーピッチ	S _{cr,N}	[mm]	3 h _{ef}									
コンクリートコーン破壊を考 慮した基準へりあき	C _{cr,N}	[mm]				1	,5 h _{ef}					

基準アンカーピッチ・へりあきより、小さいアンカーピッチ・へりあきの場合は、設計荷重を低減すること。


割裂破壊による基準アンカーピッチ・基準へりあきはひび割れを想定しないコンクリートのみに適用され、ひび割れを想定するコンクリートではコンクリートコーン破壊を考慮した基準アンカーピッチ・基準へりあきに支配される。

施工手順

*詳しい施工方法は、製品パッケージに同封されている手順をご覧ください。

アンカーは最大 2 回まで微調整可能で、微調整スペーサーによる高さ調整は 10mm まで。微調整後の最終的な穿孔長は、h_{nom2} または h_{nom3} と同じか、長くする。アンカーサイズ 14 のみ、特定の条件下で清掃の必要がない。詳細は施工手順参照。

基準荷重データ: 仮設用途として、普通コンクリートおよびフレッシュコンクリート (材齢 28 日以下、コンクリート圧縮強度 f_{ck,cube} ≥ 10 N/mm²) への施工

本項における全てのデータは下記条件による。

- コンクリート圧縮強度 f_{ck,cube} ≥ 10 N/mm²
- 仮設用途
- 所定の手順に従い、使用前にチェック専用ゲージ Hilti HRG により確認を行い、条件を満たすスクリューアンカーは 再利用可能
- 設計耐力および許容安全荷重は単体アンカーのみを対象とし、許容安全荷重と同様に設計荷重はすべての荷重方向、および、ひび割れあり・なしに対応
- 最小母材厚
- へりあきやアンカーピッチの影響がない
- HUS3-H のみに適用
- 本項におけるサイズ 10 からサイズ 14 の全てのデータは、DIBt 認証 Z-21.8.2018 (2014-4-1 発行) に基づく
- 本項におけるサイズ8の全てのデータは、ヒルティテクニカルデータに基づく

設計耐力

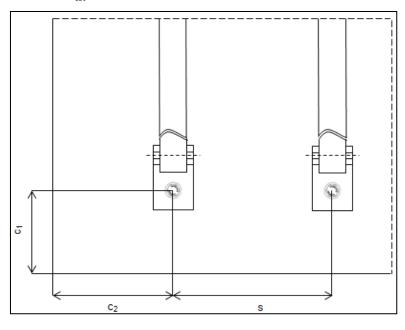
			ヒルラ	イ社内ラ	データ	DIBt 認証 Z-21.8-2018					
アンカー	アンカーサイズ HUS3-H		8		10			14			
公称埋込	み長 h _{nom}	[mm]	50	60	70	55	75	85	65	85	115
ひび割れ	ひび割れを想定するコンクリートおよびひび割れを想定しないコンクリート										
引張 N _{rd}	$f_{ck,cube} \ge 10 \text{ N/mm}^2$	[kN]	2,5	3,2	4,7	3,3	5,3	6,3	4,4	7,0	12,3
=	$f_{ck,cube} \ge 15 \text{ N/mm}^2$	[kN]	3,1	4,0	5,7	4,0	6,4	7,8	5,4	8,5	15,0
せん断 V _{rd}	f _{ck,cube} ≥ 20 N/mm ²	[kN]	3,6	4,6	6,6	4,7	7,4	9,0	6,2	9,9	17,3

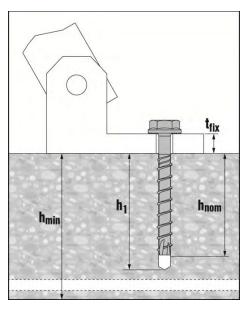
許容安全荷重 a)

			ヒルテ	イ社内	データ	DIBt 認証 Z-21.8-2018					
アンカーサイズ HUS3-H		US3-H		8			10			14	
公称埋込	み長 h _{nom}	[mm]	50	60	70	55	75	85	65	85	115
引張 N _{rec}	$f_{ck,cube} \ge 10 \text{ N/mm}^2$	[kN]	1,8	2,3	3,4	2,4	3,8	4,5	3,1	5,0	8,8
=	$f_{ck,cube} \ge 15 \text{ N/mm}^2$	[kN]	2,2	2,9	4,1	2,9	4,6	5,5	3,8	6,1	10,7
せん断 V _{rec}	$f_{ck,cube} \ge 20 \text{ N/mm}^2$	[kN]	2,6	3,3	4,7	3,3	5,3	6,4	4,4	7,1	12,4

a) 部分安全係数は、荷重の種類ごと、国ごとの規定により決められる係数で、ここでは $\gamma=1.4$ を採用している。

施工条件

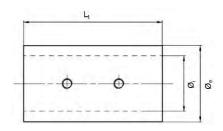

施工詳細情報

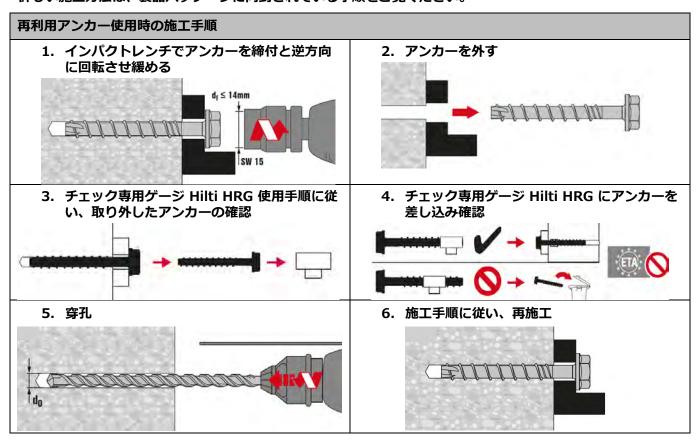

			ヒルティ社内データ				DIBt 認証 Z-21.8-2018				
アンカーサイズ	HU	S3-H		8			10			14	
公称埋込み長	h _{nom}	[mm]	50	60	70	55	75	85	65	85	115
最小母材厚	h _{min}	[mm]	100	115	145	115	150	175	130	175	255
最小アンカーピッチ	S _{min}	[mm]	180	225	285	225	300	345	255	345	510
最小へりあき 1	C ₁	[mm]	60	75	95	75	100	115	85	115	170
最小へりあき 2	C ₂	[mm]	95	115	145	115	150	175	130	180	260

施工条件

			ヒルテ	ヒルティ社内データ			DIBt	認証 Z	-21.8-	2018	
アンカーサイズ	HUS3-H			8		10			14		
公称埋込み長	h_{nom}	[mm]	50	60	70	55	75	85	65	85	115
穿孔径(ドリルの呼び径)	d _o	[mm]		8			10			14	
*1	d _{cut} ≤	<u>≤</u> [mm]	(8,45)		(10,45)			(14,50)			
穿孔長 t	h ₁ ≤	[mm]	60	70	80	65	85	95	75	95	125
取付物の許容下穴径	d _f ≤	[mm]		12		14			18		
ナット二面幅	SW	[mm]	13			15			21		
インパクトレンチ			Hilti SIW 22 T-A								
チェック専用ゲージ			Hi	lti HRG	8	Hilti HRG 10			Hilti HRG 14		

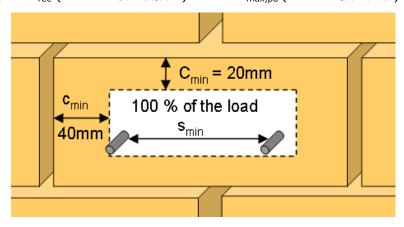
^{*1} 付録の d_{cut} 説明をご参照ください。




チェック専用ゲージ仕様

アンカーサイズ /	チェックク	ゲージ	8 / HRG 8	10 / HRG 10	14 / HRG 14		
ゲージ内径	Øi	[mm]	9,7	11,7	16,0		
ゲージ外径	Øe	[mm]	15,0	17,0	22,0		
ゲージ全長	Lt	[mm]	23,0	28,0	40,3		

施工手順


*詳しい施工方法は、製品パッケージに同封されている手順をご覧ください。

使用上の制限

- 全てのデータは非構造としての適用および複数箇所留付け用途に限る。
- 仕上げ材厚は、アンカー埋込み長として考慮しない。
- 引張荷重は、 N_{rec} (レンガ破壊、引抜け) または $N_{max,pb}$ (レンガの抜け出し)の小さい方の値とする。

中空スラブにおける標準荷重データ(単体アンカー対象)

本項における全てのデータは下記条件による。

- 所定のアンカー施工 (施工条件・手順参照) へりあきやアンカーピッチの影響がない 中空部の幅 / ウェブ厚 w/e ≤ 4,2

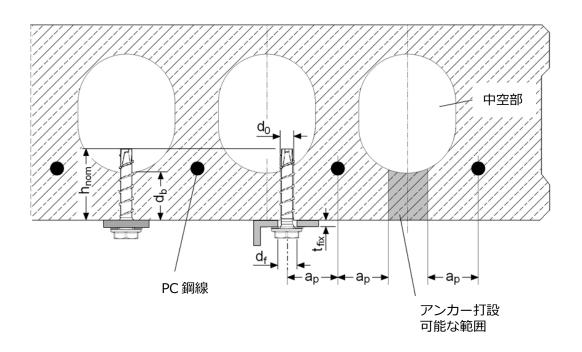
- コンクリート圧縮強度 C 30/37 ~ C 50/60 fck,cube = 37、60 N/mm² (JIS 規格 Fc ≒ 30~50 N/mm² 相当)

基準耐力

アンカーサイズ			8	10
種類		HUS3	C, H, HF	C, H, HF
下面フランジ厚	$d_b \ge$	[mm]	30	30
すべての荷重方向	F_Rk	[kN]	2,0	2,0

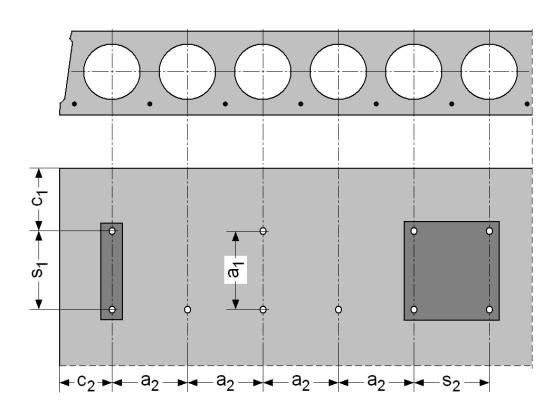
設計耐力

アンカーサイズ			8	10
種類		HUS3	C, H, HF	C, H, HF
下面フランジ厚	$d_b \ge$	[mm]	30	30
すべての荷重方向	F_Rd	[kN]	1,3	1,3

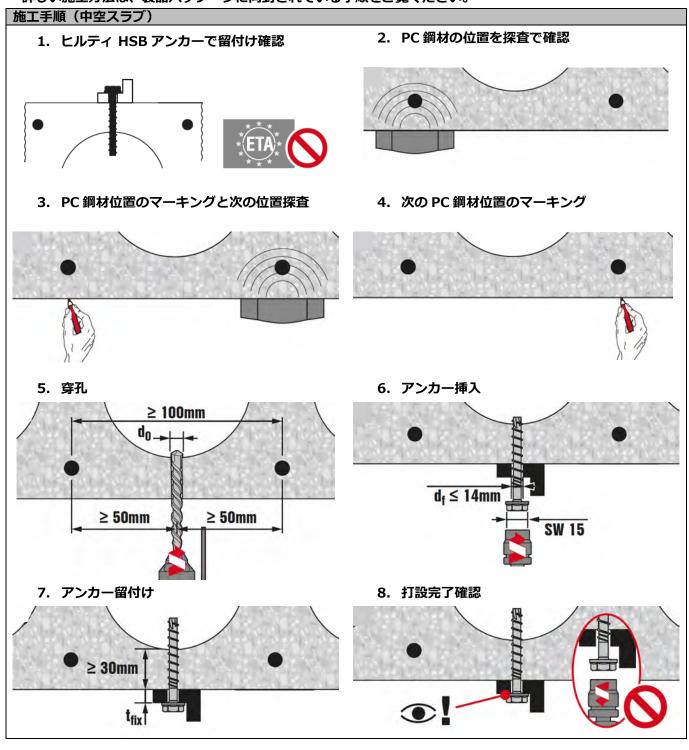

許容安全荷重

アンカーサイズ			8	10
種類		HUS3	C, H, HF	C, H, HF
下面フランジ厚	$d_b \ge$	[mm]	30	30
すべての荷重方向 ^{a)}	F_{rec}	[kN]	0,95	0,95

部分安全係数は、荷重の種類ごと、国ごとの規定により決められる係数で、ここでは γ = 1.4 を採用している。


アンカー	サイズ	長さ	d _b =30	[mm]	d _b =35	[mm]	d _b =40	[mm]	d _b =50	[mm]
種類	[mm]	[mm]	t _{fix,min} [mm]	t _{fix,max} [mm]						
		55	5	15	5	10	5	5	5	5
		65	5	25	5	20	5	15	5	5
		75	5	35	5	30	5	25	5	15
HUS3-H	8	85	15	45	15	40	15	35	15	25
		100	30	60	30	55	30	50	30	40
		120	50	80	50	75	50	70	50	60
		150	80	110	80	105	80	100	80	90
		65	5	25	5	20	5	15	5	5
HUS3-	8	75	5	35	5	30	5	25	5	15
HF	0	85	15	45	15	40	15	35	15	25
		100	30	60	30	55	30	50	30	40
		65	15	25	15	20	15	15	15	5
HUS3-C	8	75	15	35	15	30	15	25	15	15
		85	15	45	15	40	15	35	15	25
		60	5	15	5	10	5	5	5	5
		70	15	25	15	20	15	15	15	5
		80	5	35	5	30	5	25	5	15
HUS3-H	10	90	5	45	5	40	5	35	5	25
	10	100	15	55	15	50	15	45	15	35
		110	25	65	25	60	25	55	25	45
		130	45	85	45	80	45	75	45	65
		150	65	105	65	100	65	95	65	85
		60	5	15	5	10	5	5	5	5
HUS3-	10	80	5	35	5	30	5	25	5	15
HF		100	15	55	15	50	15	45	15	35
	110	25	65	25	60	25	55	25	45	
		70	15	25	15	20	15	15	15	10
HUS3-C	10	90	15	45	15	40	15	35	15	25
		100	15	55	15	50	15	45	15	35

アンカーピッチとへりあき


アンカーサイズ			8	10
種類		HUS3	C, H, HF	C, H, HF
最小へりあき	C _{min} ≥	[mm]	10	00
最小アンカーピッチ	S _{min} ≥	[mm]	10	00
群アンカー間の最小距離	a _{min} ≥	[mm]	10	00

施工手順

*詳しい施工方法は、製品パッケージに同封されている手順をご覧ください。

HUS-H ねじ固定式金属系アンカー

アンカー種類

- 迅速で簡単な施工
- 拡張による母材への影響が小さい
- 現物合わせ施工対応
- 撤去可能

特長

HUS-H (10)

母材 荷重条件

ひび割れを想定しない コンクリート

ひび割れを想定した コンクリート

レンガ

ALC

静的/準静的 荷重

耐震認証 ETA-C1

耐火

施工条件 その他

小さいへりあき /アンカーピッチ

CE 適合製品 PROFIS Anchor 設計ソフト対応

DIBt 再利用性認証

カーピッチ ETA

認証 / 証明書

DO-DE / DE-73						
種類	機関 / 研究所	No. / 発行年月日				
ETA 欧州技術認証	DIBt, Berlin	ETA-08/0307 / 2015-08-27				
耐火試験報告書	IBMB, Brunswick	UB3574/5146 / 2006-05-20				
耐火性能報告書	Exova Warringtonfire	WF 166402 / 2007-10-26				

a) 本項に記載のすべてのデータは ETA-08/0307 発行: 2015-08-27 に準拠

静的および準静的荷重データ (アンカー単体対象)

本項における全てのデータは下記条件による。

- 所定のアンカー施工 (施工条件・手順参照)
- へりあきやアンカーピッチの影響がない
- 鋼材破壊
- 最小母材厚
- コンクリート圧縮強度 C 20/25, f_{ck,cube} = 25 N/mm² (JIS 規格 F_c≒21N/mm²相当)

埋込み長

アンカーサイズ		ヒルティ社内データ	ETA 08	3/0307
種類	HUS-H 10	10	1	0
公称埋込み長	h _{nom} [mm]	60	70	85

平均耐力

アンカーサイズ		ヒルティ社内データ	ETA 08	3/0307
種類	HUS-H 10	10	1	0
公称埋込み長	h _{nom} [mm]	60	70	85
ひび割れを想定しないコンクリート				
引張 N _{Ru,m}	[kN]	16,0	16,0	26,7
せん断 V _{Ru,m}	[kN]	25,1	25,1	25,1
ひび割れを想定したコンクリート				
引張 N _{Ru,m}	[kN]	8,5	10,0	21,3
せん断 V _{Ru,m}	[kN]	25,1	25,1	25,1

基準耐力

アンカーサイズ		ヒルティ社内データ	ETA 08	3/0307	
種類	HUS-H 10	10	1	0	
公称埋込み長	h _{nom} [mm]	60	70	85	
ひび割れを想定しないコン	ひび割れを想定しないコンクリート				
引張 N _{Rk}	[kN]	12,0	12,0	20,0	
せん断 V _{Rk}	[kN]	23,8	23,8	23,8	
ひび割れを想定したコンクリート					
引張 N _{Rk}	[kN]	6,4	7,5	16,0	
せん断 V _{Rk}	[kN]	21,0	23,8	23,8	

設計耐力

HOLI IIII				
アンカーサイズ		ヒルティ社内データ	ETA 08	3/0307
種類	HUS-H10	10	10	
公称埋込み長	h _{nom} [mm]	60	70	85
ひび割れを想定しないコンクリート				
引張 N _{Rd}	[kN]	6,7	6,7	9,5
せん断 V _{Rd}	[kN]	15,9	15,9	15,9
ひび割れを想定したコンクリート				
引張 N _{Rd}	[kN]	3,6	4,2	7,6
せん断 V _{Rd}	[kN]	14,0	15,9	15,9

許容安全荷重

アンカーサイズ		ヒルティ社内データ	ETA 08	3/0307	
種類	HUS-H10	10	1	0	
公称埋込み長	h _{nom} [mm]	60	70	85	
ひび割れを想定しないコン	ひび割れを想定しないコンクリート				
引張 N _{Rec}	[kN]	4,8	4,8	6,8	
せん断 V _{Rec}	[kN]	11,3	11,3	11,3	
ひび割れを想定したコンクリート					
引張 N _{Rec}	[kN]	2,5	3,0	5,4	
せん断 V _{Rec}	[kN]	10,0	11,3	11,3	

a) 部分安全係数は、荷重の種類ごと、国ごとの規定により決められる係数で、ここでは $\gamma=1.4$ を採用している。

地震荷重データ (アンカー単体対象)

本項における全てのデータは下記条件による。

- 所定のアンカー施工 (施工条件・手順参照) へりあきやアンカーピッチの影響がない
- 鋼材破壊
- 最小母材厚
- コンクリート圧縮強度 C 20/25, f_{ck,cube}=25 N/mm² (JIS 規格 F_c≒21N/mm²相当)
- $a_{gap} = 0.5$

埋込み長

アンカーサイズ		ヒルティ社内データ	ETA 08	3/0307
種類	HUS-H	10	1	0
公称埋込み長	h_{nom} [mm]	60	70	85
有効埋込み長	h _{ef} [mm]	44	54	67

基準耐力 耐震認定 C1 の場合

アンカーサイズ		ヒルティ社内データ	ETA 08	3/0307
種類	HUS-H	10	1	0
公称埋込み長	h _{nom} [mm]	60	70	85
引張 N _{Rk,seis}	[kN]	-	-	12,5
せん断 V _{Rk,seis}		-	-	9,0

設計耐力 耐震認定 C1 の場合

アンカーサイズ		ヒルティ社内データ	ETA 08	3/0307
種類	HUS-H	10	1	0
公称埋込み長	h_{nom} [mm]	60	70	85
引張 N _{Rd,seis}	— [kN]	-	-	6,0
せん断 V _{Rd,seis}	— [KIN]	-	-	6,0

材料

機械的特性

アンカーサイズ	HUS-H	10
公称引張強度 fuk	[N/mm²]	1000
降伏強度 f _{yk}	[N/mm²]	900
応力断面 As	[mm²]	55,4
断面係数 W	[mm³]	58,2
曲げ抵抗 M ^o _{Rd.s}	[Nm]	46,5

材質

種類	材料
HUS - H	炭素鋼, 電気亜鉛めっき (≥ 5 µm)

アンカー頭部形状

アンカー	识ロピハシ1人	
種類	形状	
HUS-H	六角頭	NUS.XI 6x

アンカー寸法

アンカーサイズ		HUS-H	10
公称呼び長	l _S	[mm]	75280
円筒部径	d _S	[mm]	12,3
軸径	d_k	[mm]	8,4

施工仕様

施工条件

アンカーサイズ		HUS-H	H 10				
		h _{nom}	60	70	85		
穿孔径(ビットの呼び)	d_0	[mm]		10			
*1	$d_{cut} \leq$	[mm]	(10,45)				
許容下穴径	d_f	[mm]	14				
穿孔長 (床/壁へ施工する場合)	$h_1 \ge$	[mm]	h _{nom} +10 mm				
穿孔長 (天井へ施工する場合)	$h_1 \ge$	[mm]					
取付物厚	t_{fix}	[mm]	I _s - h _{nom}				
手締めによる最大締付トルク	T _{inst, max}	_× [Nm]	45	45	55		
インパクトレンチによる機械約	帝付			SIW 22T-A ; SI 100			

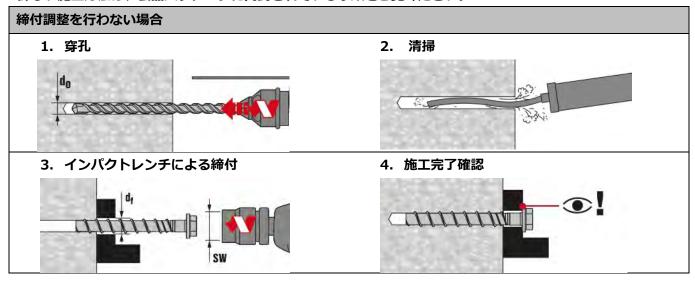
- a) コンクリート材齢 28 日以下で f_{ck,cube} ≥ 15 N/mm²
- b) コンクリート材齢 28 日以下で f_{ck,cube} ≥ 15 N/mm² 手動による締付推奨。
- *1 付録の d_{cut} 説明を参照ください。

施工条件

20_2 \tau		THIC II		10				
アンカーサイズ		HUS-H		10				
772 912		h _{nom}	60	70	85			
最小母材厚	h_{min}	[mm]	110	130	130			
ひび割れを想定しないコンクリー	- ト							
最小アンカーピッチ	S _{min}	[mm]		65				
最小へりあき	C _{min}	[mm]		65				
ひび割れを想定したコンクリート	•							
最小アンカーピッチ	S _{min}	[mm]	65	50	50			
最小へりあき	C _{min}	[mm]	65	50	50			
有効埋込み長	h _{ef}	[mm]	44	54	67			
コンクリートコーン破壊を考慮 した基準アンカーピッチ	S _{cr,N}	[mm]	2.1					
割裂破壊を考慮した基準アンカーピッチ	S _{cr,sp}	[mm]	3 h _{ef}					
コンクリートコーン破壊を考慮 した基準へりあき	C _{cr,N}	[mm]	1,5 h _{ef}					
割裂破壊を考慮した基準へりあった。	C _{cr,sp}	[mm]		1,5 Hef				

基準アンカーピッチ・へりあきより、小さいアンカーピッチ・へりあきの場合は、設計耐力を低減すること。割 裂破壊による基準アンカーピッチ・基準へりあきはひび割れを想定しないコンクリートのみに適用され、ひび割 れを想定するコンクリートではコンクリートコーン破壊を考慮した基準アンカーピッチ・基準へりあきに支配。

a) 手動による締付のみ推奨



標準施工工具

アンカーサイズ HUS-H	10		
ロータリーハンマー	TE 2 - TE 30		
ドリルビット(コンクリート、レンガ用)	TE -CX 10		
ドリルビット(ALC用)	TE -CX 8		
ソケット	S-NSD 15 1/2		
セッティングツール	SIW 22T-A; SI 100		

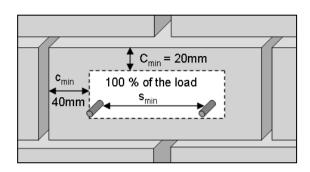
施工手順

*詳しい施工方法は、製品パッケージに同封されている手順をご覧ください。

基準荷重データ レンガ用途 アンカー単体対象

レンガ:

横目地に垂直な鉛直な穿孔による断面積低減は15%以下でなければならない。


- TE ロータリーハンマードリルの打撃モードによる Mz・KS 穿孔
- TE ロータリーハンマードリルによる打撃モードなしの PPW 穿孔

挿入:

適切なアンカー施工では、穿孔した孔で貫通・スクリューの過回転、または、スクリュー頭が取付物まで締付 けられた後にスクリューが回転しない。

へりあきとアンカーピッチの影響:

- へりあき (Mz と KS) c_{min/free} ≥ 200 mm
- へりあき (ALC) $c_{min,free} \ge 170 \text{ mm}$ へりあき (ALC) $c_{min,free} \ge 170 \text{ mm}$ 水平方向と鉛直方向の目地モルタルまでの最小距離 $c_{min,h}$ と $c_{min,v}$ は下図を参照。 レンガ単体での最小アンカーピッチは $s_{min} = 80 \text{ mm}$ 、下図を参照。

許容安全荷重

<u> </u>			
アンカーサイス	ζ		ヒルティ社内データ
		種類 HUS-H	10
母材		h _{nom} [mm]	60
n Mei			F _{rec} ^{a)} [kN] 引張・せん断
	粘土レンガ	≥ 8	1,0
	Mz 2,0-2DF	≥ 10	1,2
	DIN V 105-100 / EN	≥ 12	1,3
	771-1 LxWxH [mm]:	≥ 16	1,5
	240x115x113 h _{min} [mm]: 115	≥ 20	1,7
	灰砂レンガー	≥ 8	1,1
	KS 2,0-2DF DIN V 106-100 / EN	≥ 10	1,2
	771-2	≥ 12	1,3
	LxWxH [mm]:	≥ 16	1,5
	240x115x113 h _{min} [mm]: 115	≥ 20	1,7
	ALC		
	PPW -0,65 DIN 4165/ EN 771-4 LxWxH [mm]: 499x240x249 hmin [mm]: 240	≥ 6	1,3

a) 引張、せん断、または、引張とせん断の組み合わせ荷重のための基準耐力

基準耐力は、単体アンカー、または、仕様で記載された最小アンカーピッチ smin と同等または大きい間隔で留付けられた2つまたは4 つの群アンカーによる。

179

荷重値:

- HUS-H アンカーの技術データは、MZ 12 2,0-2DF、KS 12 2,0-2DF と PPW 6-0,65 の基準とする荷重である。
- 荷重値は、非構造用途のみに適用可能。
- レンガには様々な種類、また国ごとに違いがあることから、現場において現物アンカー性能試験を実施し、その技術データを使用することを推奨している。
- HUS-H アンカーは、図のように最小へりあきやアンカーピッチを考慮して、レンガの真ん中に留付け、試験を実施している。
- HUS-H アンカーは、レンガ間の目地モルタル部または中空レンガでの試験は実施されてないが、荷重の低減が予想される。
- アンカー位置を指定できないレンガ壁の場合、すべてのアンカーを試験し検証することが望ましい。

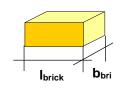
使用上の注意:

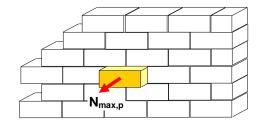
- 全てのデータは非構造用途で複数留付けに適用する。
- 仕上げ材厚は、アンカー埋込み長として考慮しない。
- 引張荷重のための耐力選定は、 N_{rec} (レンガ破壊、引抜け) と $N_{max,pb}$ (単体レンガの引抜け)の小さい方の値を 適用すること。

単体レンガの引抜け:

単体アンカーまたは群アンカーによる単体レンガの引抜け耐力 N_{max.pb} [kN] は下表参照。

粘土レンガ:


N _{max,pb} [kN]		幅 b _{brick} [mm]								
		80	120	200	240	300	360			
長さ	240	1,1	1,6	2,7	3,3	4,1	4,9			
I _{brick}	300	1,4	2,1	3,4	4,1	5,1	6,2			
[mm]	500	2,3	3,4	5,7	6,9	8,6	10,3			


その他すべてのレンガ:

N _{max,pb}		幅 b _{brick} [mm]									
[kN]	80	120	200	240	300	360					
長さ	240	0,8	1,2	2,1	2,5	3,1	3,7				
I _{brick}	300	1,0	1,5	2,6	3,1	3,9	4,6				
[mm]	500	1,7	2,6	4,3	5,1	6,4	7,7				

 $N_{max,pb}$ = 単体レンガが抜け出す耐力

 I_{brick} = レンガの長さ b_{brick} = レンガの幅

施工仕様*

アンカーサイズ		HUS-H	10
		h _{nom}	70
穿孔径(ビットの呼び径): 粘土レンガ(Mz) と灰砂レン ガ (KS)	d ₀	[mm]	10
穿孔径(ビットの呼び径): ALC (PPW)	d_0	[mm]	8
許容下穴径	d_f	[mm]	14
穿孔長	$h_1 \ge$	[mm]	h _{nom} +10 mm
取付物厚	t_fix	[mm]	II _{nom} +10 IIIII
最大締付トルク 手締めの場合	à a)		
粘土レンガ (MZ)	T _{inst, max}	[Nm]	8
灰砂レンガ (KS)	T _{inst, max}	[Nm]	16
ALC (PPW)	T _{inst, max}	[Nm]	8

^{*}上表のレンガおよび ALC は、許容安全荷重の表に記載された欧州規格に適合したレンガおよび ALC であり、表の値はそれらによる参考値です。ご使用の際は、現場の現物レンガおよび ALC によるアンカー性能試験による技術データを基に検証を行った上で、施工することを推奨しています。

HUS-HR / HUS-CR ねじ固定式金属系アンカー

アンカー種類 特長

HUS-H (10)

HUS-HR

(6-14)

- 高い生産性 従来アンカーから穿孔作 業と施工工程の改善
- ひび割れを想定したコンクリート/ひび 割れを想定しないコンクリートによる ETA 欧州技術認証取得
- ETA C1 欧州耐震認証
- フレッシュコンクリート(f_{ck,cube} = 10/15/20 Nmm²) での仮設再利用のための認証

HUS-CR (8-14)

母材

ひび割れを想定しない コンクリート

ひび割れを想定した コンクリート

レンガ

ALC

静的/準静的 荷重

荷重条件

耐震認証 ETA-C1

耐火

施工条件 その他

小さいへりあき/ アンカーピッチ

欧州技術認証 ETA

CE 適合製品

耐腐食

PROFIS Anchor 設計ソフト対応

認証 / 証明書

<u> </u>		
種類	機関 / 研究所	No. / 発行年月日
ETA 欧州技術認証	DIBt, Berlin	ETA-08/0307 / 2018-08-23
耐火試験報告書	DIBt, Berlin	ETA-08/0307 / 2018-08-23
耐火試験報告書 ZTV-Tunel (EBA)	MFPA, Leipzig	PB III / 08-354 / 2008-11-27

a) 本項に記載のすべてのデータは ETA-08/0307: 2018-08-23 発行に準拠

静的/準静的荷重 (単体アンカー対象)

本項における全てのデータは下記条件による。

- へりあきやアンカーピッチの影響がない
- 鋼材破壊
- 最小母材厚
- コンクリート圧縮強度 C 20/25, f_{ck,cube} = 25 N/mm²(JIS 規格 F_c≒21N/mm²相当)

有効埋込み長 静的荷重

アンカーサイズ			6		8		10				14		
種類		HUS-	HR,CR	HR,CR		HR,CR		Н		HR			
公称埋込み長	h _{ef}	[mm]	55	50 ^{a)}	60	80	60 ^{a)}	70	90	70	85	70	110

a) 埋込み長はヒルティ社内データによる。

基準耐力

アンカーサイズ			8			10			14		
種類	HUS-	HR HR, CR			HR, CR			HR			
ひび割れを想定しないコンクリート											
引張 N _{Rk}	[kN]	9,0	9,0 ^{a)}	12,0	16,0	12,0 ^{a)}	16,0	25,0	-	18,9	40,2
せん断 V _{Rk}	[kN]	17,0	23,6 ^{a)}	26,0	26,0	31,4 ^{a)}	33,0	33,0	-	37,8	77,0
ひび割れを想定したコンクリート											
引張 N _{Rk}	[kN]	5,0	5,0 ^{a)}	6,0	12,0	7,5 ^{a)}	9,0	16,0	-	12,0	25,0
せん断 V _{Rk}	[kN]	16,3	16,9 ^{a)}	23,2	26,0	22,5 ^{a)}	28,6	33,0	-	27,0	57,4

a) ヒルティ社内データ

設計耐力

アンカーサイズ		6	8		10			14			
種類	HUS-	HR	R HR, CR			HR, CR			HR		
ひび割れを想定しないコンクリート											
引張 N _{Rd}	[kN]	4,3	5,0 ^{a)}	6,7	8,9	6,7 ^{a)}	8,9	13,9	-	10,5	22,3
せん断 V _{Rd}	[kN]	11,3	15,7 ^{a)}	17,3	17,3	21,0 ^{a)}	22,0	22,0	-	25,2	51,3
ひび割れを想定したコンクリート											
引張 N _{Rd}	[kN]	2,4	2,8 ^{a)}	3,3	6,7	4,2 ^{a)}	5,0	8,9	-	6,7	13,9
せん断 V _{Rd}	[kN]	10,9	11,2 ^{a)}	15,5	17,3	15,0 ^{a)}	19,0	22,0	-	18,0	38,3

a) ヒルティ社内データ

許容安全荷重 b)

アンカーサイズ		6	8		10			14			
種類	HUS-	HR	R HR, CR			HR, CR			HR		
ひび割れを想定しないコンクリート	•										
引張 N _{Rec}	[kN]	3,1	3,6 ^{a)}	4,8	6,3	4,8	6,3	9,9	-	7,5	16,0
せん断 V _{Rec}	[kN]	8,1	11,2 ^{a)}	12,4	12,4	15,0	15,7	15,7	-	18,0	36,7
ひび割れを想定したコンクリート											
引張 N _{Rec}	[kN]	1,7	2,0 ^{a)}	2,4	4,8	3,0	3,6	6,3	-	4,8	9,9
せん断 V _{Rec}	[kN]	1,8	8,0 ^{a)}	11,0	12,4	10,7	13,6	15,7	-	12,9	27,3

a) ヒルティ社内データ

b) 部分安全係数は、荷重の種類ごと、国ごとの規定により決められる係数で、ここでは $\gamma=1.4$ を採用している。

地震荷重

本項における全てのデータは下記条件による。

- 所定のアンカー施工 TR045 に準拠した耐震設計
- 下記データは ETA-08/0307(2015-08-27 発行)に基づく コンクリート圧縮強度 C20/25 から C50/60(JIS 規格 F_c≒21~50 N/mm² 相当)

有効埋込み長 耐震認証 C1による

アンカーサイズ		8	10	14
種類	HUS-	HR, CR	HR, CR	HR
公称埋込み長	h _{nom} [mm]	80	90	110

基準耐力 耐震認証 C1 による

アンカーサイズ		8	10	14
種類	HUS-	HR, CR	HR, CR	HR
鋼材破壊 引張基準耐力				
基準耐力	$N_{Rk,s,seis}$ [kN]	34,0	52,6	102,2
部分安全係数	γ _{Ms,seis} [-]		1,4	
ひび割れを想定したコンクリ	ート C20/25 to C5	50/60 引抜基準耐力	J	
基準耐力	$N_{Rk,p,seis}$ [kN]	7,7	12,5	17,5
部分安全係数	γ _{Ms,seis} [-]		1,8	
コンクリートコーン破壊/割裂	裂破壊			
部分安全係数	γ _{Ms,seis} [-]		1,8	

基準耐力 耐震認証 C1 による 1)

アンカーサイズ		8	10	14
種類	HUS-	HR, CR	HR, CR	HR
鋼材破壊 せん断基準耐力	J			
基準耐力	$V_{Rk,s,seis}$ [kN]	11,1	17,9	53,9
部分安全係数	γ _{Ms,seis} [-]		1,5	
コンクリート局所破壊/コ	ンクリート剥離破壊			
部分安全係数	γ _{Mc,seis} [-]		1,5	

¹⁾ ヒルティフィリングセット使用時は、低減係数 $\alpha_{gap}=1,0$

耐火

本項における全てのデータは下記条件による。

- 所定のアンカー施工
- へりあきやアンカーピッチの影響がない
- 最小母材厚
- 下記データは ETA-08/0307(2015-08-27 発行)に基づく

公称埋込み長 耐火として

アンカーサイズ		6	8	3	1	0	1	4
種類	HUS-	HR	Н	R	HR		HR	
公称埋込み長	h _{nom} [mm]	55	60	80	70	90	70	110

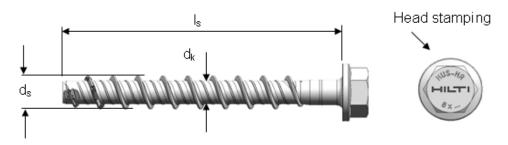
許容安全荷重 加熱時

アンカーサイズ				6	8	3	10	0	14	
種類			HUS-	HR	Н	R	Н	R	HR	
鋼材破壊 引張荷	5重/せん断荷	重 (F _{Rec,s,fi}	$=N_{Rec,s,f}$	$_{i} = V_{Rec,s,}$	fi)					
	R30	$F_{Rec,s,fi}$	[kN]	4,9	9	,3	5,0	18,5	41	,7
	R60	$F_{Rec,s,fi}$	[kN]	3,3	6	,3	3,6	12,0	26	,9
	R90	$F_{Rec,s,fi}$	[kN]	1,8	3	,2	2,2	5,4	12	,2
許容安全引張・	R120	$F_{Rec,s,fi}$	[kN]	1,0	1	,7	1,5	2,4	5,	4
せん断荷重	R30	$M^0_{Rec.s.fi}$	[kN]	4,0	8	,2	6,3	19,4	65	,6
	R60	$M^{U}_{Rec,s,fi}$	[kN]	2,7	5	,5	4,6	12,6	42	,4
	R90	$M^{U}_{Rec.s.fi}$	[kN]	1,4	2,8		2,8	5,7	19	,2
	R120	M ⁰ _{Rec,s,fi}	[kN]	0,8	1	,5	1,9	2,5	8,	5
引抜破壊										
	R30									
許容安全荷重	R60	$N_{\text{Rec,p,fi}}$	[kN]	1,3	1,5	3,0	2,3	4,0	3,0	6,3
可省女工彻里	R90									
	R120	$N_{Rec,p,fi}$	[kN]	1,0	1,2	2,4	1,8	3,2	2,4	5,0
コンクリートコー	-ン破壊									
へりあき	R30 to R120	C _{cr,N}	[mm]				2h _{ef}			
アンカーピッチ	R30 to R120	S _{cr,N}	[mm]				4h _{ef}			
コンクリート局所	破壊									
	R30 to R120	k	[-]	1,5	2	,0	2	.,0	2,	0

a) 加熱時の許容安全荷重は、加熱時の荷重のために安全係数 $\gamma_{Ms,fire}$ =1,0 を 、荷重のために部分安全係数 $\gamma_{Ms,fire}$ =1,0 を考慮する。荷重のための部分安全係数は国ごとの国ごとの規定により決められる係数。

材料

機械的特性


アンカーサイズ		6	8	10	14
種類	HUS-	HR	HR, CR	HR, CR	HR
公称引張強度 fuk	[N/mm ²]	1050	870	950	690
降伏強度 fyk	[N/mm ²]	900	745	815	590
応力断面積 As	[mm ²]	22,9	39	55,4	143,1
断面係数 W	[mm ³]	15	34	58	255
曲げ抵抗 M ⁰ _{Rd,s}	[Nm]	19	36	66	193

材質

種類	材料
六角頭コンクリートスクリュー	ステンレス鋼 (A4)

アンカー寸法

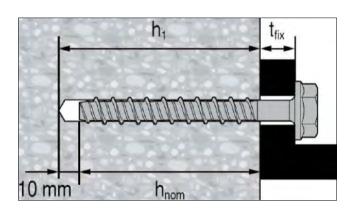
アンカーサイズ		6	8	10	14
種類	HUS-	HR	HR, CR	HR, CR	HR
軸径	d _k [mm]	5,4	7,05	8,4	12,6
円筒部径	d _s [mm]	7,6	10,1	12,3	16,6
応力断面	A _s [mm]	22,9	39,0	55,4	143,1

スクリュー全長と取付物厚 HUS-HR

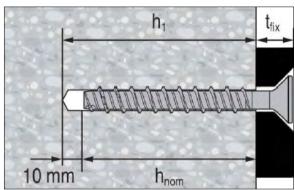
アンカーサイス	ζ .	6	8	3	1	0	14		
埋め込み長	h _{nom1} , h _{nom2} [mm]	55	60	80	70	90	70	110	
取付物厚		t _{fix}	t _{fix1}	t _{fix2}	t _{fix1}	t _{fix2}	t _{fix1}	t _{fix2}	
	60	5	-	-	-	-	-	-	
-	65	-	5	-	-	-	-	-	
	70	15	ı	-	ı	ı	ı	-	
	75	-	15	-	5	5	10	-	
	80	-	-	-	-	-	-	-	
	85	-	25	5	15	-	-	-	
	90	-	-	-	-	-	-	-	
スクリュー	95	-	35	15	25	5	-	-	
全長	100	-	-	-	-	-	-	-	
[mm]	105	-	45	25	35	15	-	-	
	110	-	ı	-	ı	ı	ı	-	
	115	-	-	-	45	25	-	-	
_	120	-	-	-	-	-	50	10	
	130	-	-	-	1	-	-	-	
	135	-	-	-	1	-	65	25	
	140	-	-	-	60	40	-	-	

スクリュー全長と取付物厚 HUS-CR

アンカーサ	イズ	8	3	10	
埋込み長	h _{nom1} , h _{nom2} [mm]	60	80	70	90
	取付物厚	t _{fix1}	t _{fix2}	t _{fix1}	t _{fix2}
	75	15	ı	-	5
	80	-	-	-	-
スクリュー	85	-	-	15	-
スクリュー 全長	90	-	-	-	-
[mm]	95	35	15	-	-
	100	-	-	-	-
	105	45	25	35	15


施工仕様

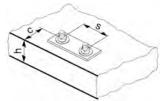
施工条件


//6二木				-		-						-
アンカーサ	イズ			6		8			10		1	4
種類			HUS-	HR	H	IR, CR	a)	H	IR, CR	a)	Н	R
公称埋込み	長	h _{nom}	[mm]	55	50	60	80	60	70	90	70	110
有効埋込み	長	h _{ef}	[mm]	45	38	47	64	46	54	71	52	86
穿孔径(ビ	ットの呼び径)	d ₀	[mm]	6		8			10		1	4
*1		d_{cut}	[mm]	(6,4)		(8,45)			(10,45))	(14	.,5)
許容下穴径		d _f	[mm]	9		12			14		1	8
穿孔長		h ₁	[mm]	65	60	70	90	70	80	100	80	120
ナット二面「	幅	SW	[mm]	13		13			15		2	1
皿頭径		d _h	[mm]	-		-			21		-	-
	コンクリート	T _{inst}	[Nm]	_a)	35	_a)	_a)		45 ^{c)}		65	
締付トルク	レンガ, Mz 12	T _{inst}	[Nm]	10	- b)	16	16	- b)	20	20	- b)	- b)
ボウイソ トノレン	レンガ, KS 12	T _{inst}	[Nm]	10	- b)	16	16	- b)	20	20	- b)	- ^{b)}
	ALC	T _{inst}	[Nm]	4	- b)	8	8	- b)	10	10	- b)	- b)

- a) コンクリート母材への手締め施工禁止 (所定の機械による施工限定)
- b) 本用途への施工について、ヒルティによる推奨は行わない。
- c) HUS-HR 専用締付トルク
- *1 付録の d_{cut} 説明を参照ください。

HUS-HR (六角頭) 6, 8,10 and 14

HUS-CR (皿頭) 8 and 10


標準推奨工具

アンカーサイズ		6	8	10	14
種類	HUS-	HR	HR, CR	HR, CR	HR
ロータリーハンマードリル			TE 2 -	TE 30	
ドリルビット		TE-C3X 6/17	TE-C3X 8/17	TE-C3X 10/22	TE-C3X 14/22
ソケット		S-NSD 13 ½ (L)	S-NSD 13 ½ (L)	S-NSD 15 ½ (L)	S-NSD 21 ½ (L)
トルクス (CR タイプのみ)		-	S-SY TX 45	S-SY TX 50	-
インパクトレンチ		Hilti SIW 14-A, 22-A		Hilti SIW 22 T-A	1

施丁条件

アンカーサイズ			6		8			10		1	4
種類		HUS-	HR	ŀ	IR, CR	a)	ŀ	IR, CR	a)	Н	R
公称埋込み長	h _{nom}	[mm]	55	50	60	80	60	70	90	70	110
最小母材厚	h _{min}	[mm]	100	100	100	120	120	120	140	140	160
最小アンカーピッチ	S _{min}	[mm]	35	45	45	50	50	50	50	50	60
最小へりあき	C _{min}	[mm]	35	45	45	50	50	50	50	50	60
割裂破壊を考慮した基準アンカーピッチ	S _{cr,sp}	[mm]	135	114	114	192	166	194	256	187	310
割裂破壊を考慮した基準へりあき	C _{cr,sp}	[mm]	68	57	71	96	83	97	128	94	155
コンクリートコーン破壊を考慮した 基準アンカーピッチ	S _{cr,N}	[mm]	135	114	114	192	166	194	256	187	310
コンクリートコーン破壊を考慮した 基準へりあき	C _{cr,N}	[mm]	68	57	71	96	83	97	128	94	155

基準アンカーピッチ・へりあきより、小さいアンカーピッチ・へりあきの場合は、設計荷重を低減す ること。割裂破壊による基準アンカーピッチ・基準へりあきはひび割れを想定しないコンクリートの みに適用され、ひび割れを想定するコンクリートではコンクリートコーン破壊を考慮した基準アンカ ーピッチ・基準へりあきに支配される。

施工手順

*詳しい施工方法は、製品パッケージに同封されている手順をご覧ください。

Setting instruction 2. 清掃 1. 穿孔 do 3. インパクトレンチによる締付 4. 施工完了確認

基準荷重データ レンガ用途(単体アンカー対象)

本項の全てのデータは下記条件による。

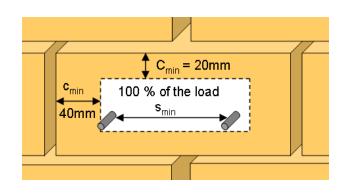
- TE ロータリーハンマードリルの打撃モードによる穿孔のみ有効
- 所定のアンカー施工 (施工条件・手順参照)
- 中空部 / 断面部 比率が目地モルタル領域の 15%を超えない。
- 孔から端部まで少なくとも 70mm へりあき、アンカーピッチやその他の影響、下図参照。
- 本項の全てのデータはヒルティ社内データによる。

公称埋込み長

アンカーサイズ			6	8	10
種類		HUS-	HR	HR	HR, CR
公称埋込み長	h _{nom}	[mm]	55	60	70

許容安全荷重 HUS-HR / HUS-CR

アンカーサイズ				6	8	10
	粘土レンガ Mz 12/2,0 DIN 105 / EN 771-1 f _b ^{a)} ≥ 12 N/mm ²	引張 N _{Rec}	[kN]	0,9	1,0	1,1
		せん断 N _{Rec}	[kN]	1,4	2,0	2,3
	灰砂レンガ Mz 12/2,0		[kN]	0,6	0,6	1,0
DIN	DIN 106/EN 771-2 $f_b^{a)} \ge 12 \text{ N/mm}^2$	せん断 N _{Rec}	[kN]	0,9	1,1	1,7
	ALC PPW 6-0,4 DIN 4165/EN 771-4 $f_b^{a)} \ge 6 \text{ N/mm}^2$	引張 N _{Rec}	[kN]	0,2	0,2	0,4
		せん断 N _{Rec}	[kN]	0,4	0,4	0,9


レンガ造および組積造でのアンカー留付け位置

へりあきとアンカーピッチの影響

- HUS3-HR アンカーの技術データは MZ 12、KS 12 と PPW 6 の基準とする荷重であり、レンガには様々 な種類、また国ごとに違いがあることから、現場において現物アンカー性能試験を実施し、その技術デー 夕を使用することを推奨している。
- HUS3-HR アンカーは、図のようにレンガの中心に留付け、試験を実施している。レンガや中空レンガの 間の目地モルタル部での試験は行われていないが、荷重低減が想定される。
- アンカー位置を指定できないレンガ壁の場合、すべてのアンカーを試験し検証することが望ましい。
- へりあき (Mz と KS) ≥ 200mm
- へりあき (ALC) ≥ 170mm
- 水平方向と鉛直方向の目地モルタルまでの最小距離 (cmin) は下図を参照。
- レンガ単体の最小アンカーピッチ (smin) ≥ 2*cmin

使用上の制限

- 個々のレンガに作用する荷重は圧縮力なしで 1.0 kN または 圧縮力ありで 1.4 kN を超えない。
- 全てのデータは非構造としての適用および複数箇所留付け用途に限る。 仕上げ材厚は、アンカー埋込み長として考慮しない。

HUS3-I Flex SC 6x35 ねじ固定式金属系アンカー、リダンダント留付け

アンカー

HUS3-I Flex SC 炭素鋼 六角頭 6mm - 3/8" 内ねじ

- 高い作業性 従来のアンカーと比べ て、より小さい穿孔径と少ない施工作
- ETA (欧州技術認証) 取得済み
- 非拡張タイプ 狭いへりあきとアンカ ーピッチも対応可能

母材

荷重条件

ひび割れを想定しない ひび割れを想定する コンクリート

コンクリート

レンガ

ALC

中空スラブ

静的 / 準静的

耐火

施工条件

その他

リダンダント 小さいへりあき /アンカーピッチ 留付け

ETA 欧州技術認証

CE 適合製品

認証 / 証明書

種類	機関 / 研究所	No. / 発行年月日
ETA 欧州技術認証	DIBt, Berlin	ETA-10/0005 / 2018-11-12
耐火試験報告書	DIBt, Berlin	ETA-10/0005 / 2018-11-12

本項に記載のすべてのデータは ETA-10/0005 : 2018-11-12 発行に準拠

基準荷重データ(単体アンカー対象)

本項における全てのデータは下記条件による。

- 所定のアンカー施工 (施工条件・手順参照)
- へりあきやアンカーピッチの影響がない
- コンクリート圧縮強度 C 20/25, f_{ck.cube} = 25 N/mm² (JIS 規格 F_c≒21N/mm²相当)

許容安全荷重(全方向の荷重)

			ETA-10/0005(発行 2016-05-16)によるデータ
種類			HUS3-I Flex 6
埋込み長さ	h _{nom}	[mm]	35
c : へりあき距離	$35 \le c < 80$ mm F^0_{Rec}	[kN]	0.9
	$c \ge 80 \text{mm} F^0_{Rec}$	[kN]	1.4

リダンダント留付けの必要条件

リダンダント留付けは ETAG 001 Part 6, Annex 1 で定義されている.						
最低の留付け箇所	留付け箇所当りの最低アンカー数	留付け箇所当りの最大設計作用荷 重				
3	1	2 kN				
4	1	3 kN				

⁽参考) ある程度のひび割れを考慮する設計が求められる欧州では、上向き留付けには、リダンダント留付けの考え方を導入しており、国によっては独自の基準を設けている。設けていない国は、上記の条件を満たす吊り物に対する留め付けの考え方に従う必要があるとしている。詳しくは弊社担当者までお問い合わせ下さい。

アンカー本体材料

機械的性質

種類		HUS3-I Flex SC 6
引張強さ	f _{uk} [N/mm²]	930
応力断面積	A _s [mm ²]	26.9
断面係数	W [mm³]	19.7
許容曲げモーメント	M _{Rd,s} [Nm]	14.6

材質

種類	材料	コーティング
アンカー本体	炭素鋼	亜鉛めっき (≥5 µm)
高ナット	炭素鋼, グレード 6	亜鉛めっき (≥5 µm)
ワッシャーインジケーター	ABS 樹脂	-
はめ合いインジケーター	ABS 樹脂	-

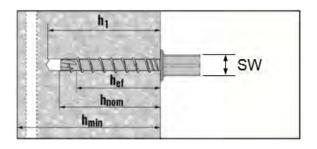
形状寸法

寸法

種類			HUS3-I Flex SC 6
基本長さ	ls	[mm]	35
外径	d _t	[mm]	7.85
軸径	d _k	[mm]	5.85
首下径	ds	[mm]	6.15
ナット二面幅	SW	[mm]	14
6mm - 3/8" 内ねじ			SW GA

施工仕様

			HUS3-I Flex SC 6
ドリルビットの呼び径	d ₀	[mm]	6
*1	d _{cut} ≤	[mm]	(6.4)
取り付け物の下穴径	d_f	[mm]	9
二面幅	SW	[mm]	14
締付けトルク	T _{inst}	[mm]	18
穿孔深さ	h₁≥	[mm]	38

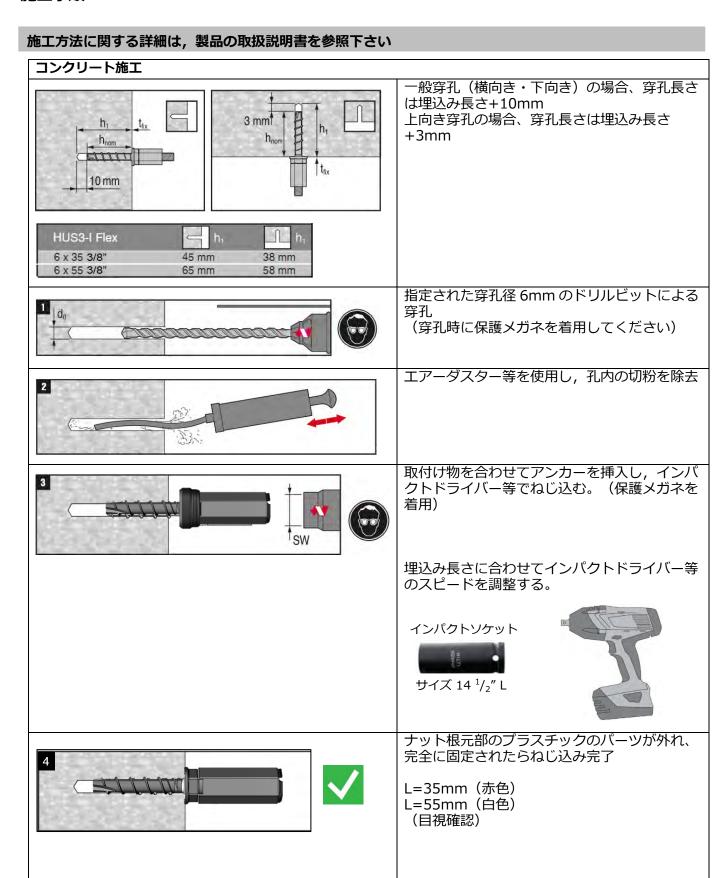

^{*1} 付録の d_{cut} 説明をご参照ください。

標準施工工具

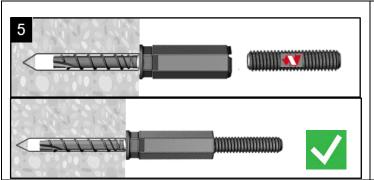
種類	HUS3-I Flex SC 6
ハンマードリル	TE 6 – TE 7
ドリルビット	TE-CX 6
インパクトソケット	S-NSD 14 ¹ / ₂ (L)
インパクト	HILTI SIW 14-A or HILTI SID 4-A

¹⁾ これ以外の工具を使用する場合は 150Nm~200Nm 程度の締付け能力を有するインパクトドライバー等を推奨

^{*}コンクリート圧縮強度は C20/30 から C50/60 を想定


²⁾ これ以外の工具を使用する場合は 100Nm~150Nm 程度の締付け能力を有するインパクトドライバー等を推奨

³⁾ これ以外の工具を使用する場合は 50Nm~100Nm 程度の締付け能力を有するインパクトドライバー等を推奨


⁴⁾⁾中空部厚さが 25 ミリ以上であることを示す

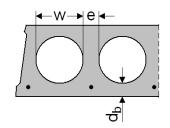
施工手順

ボルトを挿入し、プラスチックのパーツが取れたらボルト取付終了 (目視確認)

施工完了

設計条件

アンカー			HUS3-I Flex SC 6		
埋込み長	h _{nom}	[mm]	35		
有効埋込み長	h _{ef}	[mm]	25		
最小母材厚	h _{min}	[mm]	80		
最小アンカーピッチ	S _{min}	[mm]	35		
最小へりあき	C _{min}	[mm]	35(80) ¹⁾		
基準アンカーピッチ	S _{cr}	[mm]	75 (3xh _{ef})		
基準へりあき	C _{cr}	[mm]	37.5(1.5xh _{ef})		
C S S					


1) 基準アンカーピッチ(基準へりあき)より小さいアンカーピッチ(へりあき)の場合、設計荷重を低減して下さい. 詳しくは弊社担当者までお問い合わせください.

基本荷重データ

本項における全てのデータは下記条件による。

- 正しく施工されていること(施工手順参照)
- へりあき、アンカーピッチの影響なし 中空部とウェブ厚比 w/e≦4.2
- コンクリート圧縮強度: f_{ck,cube}=37~56 N/mm² (JIS 規格のコンクリート圧縮強度 F_c=30~50 N/mm²相当)

許容安全荷重a)

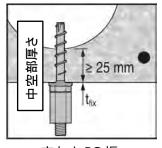
種類	HUS3 I-Flex			
中空部厚さ	d _b [mm]	25	30	35
全方向の荷重 ^{a)}	F _{Rec} [kN]	0.5	1.0	1.4

a) 部分安全係数は $\gamma = 1,4$ です. この部分安全係数は荷重の種類によって異なるため、各国の基準を採用してください.

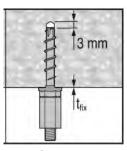
リダンダント留付けの必要条件

リダンダント留付けは ETAG 001 Part 6, Annex 1 で定義されている.					
最小留付け箇所数	留付け箇所あたりの 最小アンカー数	留付け箇所あたりの 最大設計作用荷重			
3	1	2 kN			
4	1	3 kN			

⁽参考) ある程度のひび割れを考慮する設計が求められる欧州では、上向き留付けには、リダンダント留付けの考え方を導入しており、国 によっては独自の基準を設けている.設けていない国は、上記の条件を満たす吊り物に対する留め付けの考え方に従う必要があるとしてい る. 詳しくは弊社担当者までお問い合わせ下さい.


施工仕様

種類			HUS3-I Flex SC 6
埋込み深さ	h _{nom} ≥	[mm]	35
有効埋込み長	h _{ef}	[mm]	25
中空部のコンクリート厚さ	d _b ≥	[mm]	25
ドリルビットの呼び径	d ₀	[mm]	6
穿孔深さ ^{a)b)}	h ₁ ≥	[mm]	38
取り付け物の下穴径	d _f	[mm]	9
締付けトルク	T _{inst}	[mm]	18


- a) 穿孔深さは中空部のコンクリート厚さより深くなること
- b) 穿孔する位置は、事前に鉄筋探査などを行い、PC 鋼線または鉄筋を傷つけないようにすること

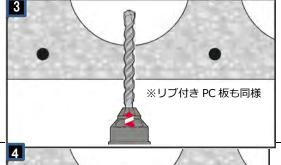
穴あき PC 板、リブ付き PC 板

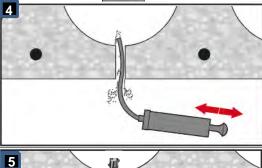
リブ付き PC 板

穴あき PC 板の上向き施工は、中空部の場合、 25mm 以上の埋込み長さは必要。中空部でない 場合、およびリブ付き PC 板への穿孔長さは埋込 み長さ+3mm

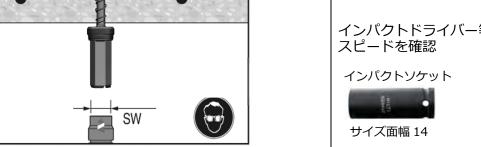
条件

(中空部厚さ 25mm 以上)

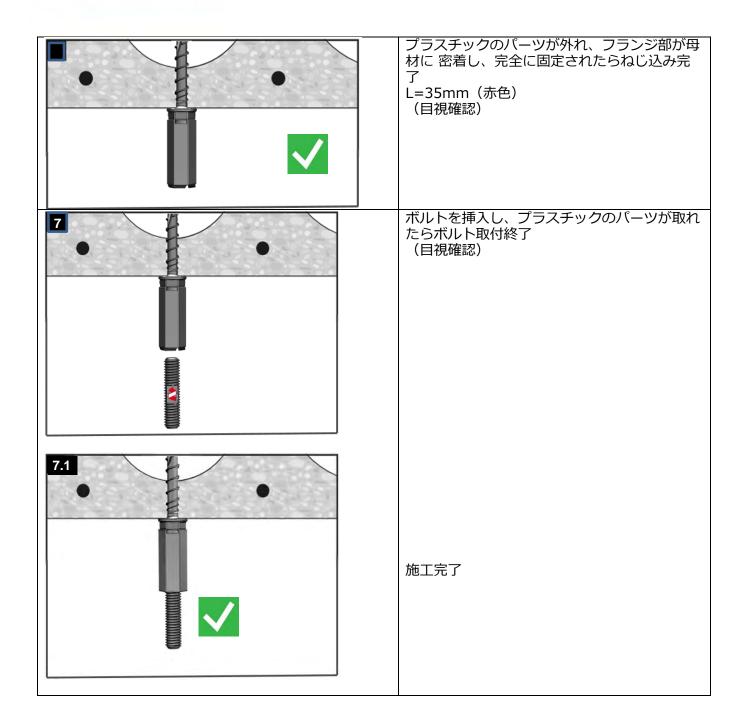

中空部厚さ 25mm→許容安全荷重 0.5 k N 中空部厚さ 30mm→許容安全荷重 1.0 k N 中空部厚さ 35mm 以上→許容安全荷重 1.4 k N アンカーを施工する前に PC 鋼線の位置を探査 (推奨探査機 PS50)


PC 鋼材の場所をマーキングする。

PC 鋼線を避けて、指定された呼び径 6 ちのドリルビットによる穿孔 (穿孔時に保護メガネを着用)



エアーダスター等を使用し, 孔内の切粉を除去。



| アンカーを挿入し, インパクトドライバー等で | ねじ込む(保護メガネを着用)

インパクトドライバー等の締付けトルク値及び スピードを確認

HUS3-I Flex SC 6x55 ねじ固定式金属系アンカー

アンカー

特長

HUS3-I 6 炭素鋼 六角頭 6mm 3/8"内ねじ

- 高い生産性 従来のアンカーと比べて、 より小さい穿孔径と少ない施工作業
- ETA 欧州認証 ひび割れ想定するまた はひび割れ想定しない コンクリート
- 小さいへりあきとアンカーピッチも対応 可能

母材 荷重条件

ひび割れを想定しないひび割れを想定する コンクリート コンクリート

レンガ

ALC

中空スラブ

静的 / 準静的

耐火

施工条件

その他

小さいへりあき /アンカーピッチ

CE 適合製品

アンカー設計 ソフトウェア 対応

DIBt アンカー 再利用認証

認証 / 証明書

1	重類	機関 / 研究所	番号 / 発行日
	ETA 欧州技術認証	DIBt, Berlin	ETA-13/1038 / 2016-12-08
Ī	耐火試験報告	DIBt, Berlin	ETA-13/1038 / 2016-12-08

a) 本項の全てのデータは ETA-13/1038: 2016-12-08 発行に準拠

静的・準静的として作用する荷重(単体アンカー対象)

本項における全てのデータは下記条件による。

- 所定のアンカー施工 (施工条件・手順参照)
- へりあきやアンカーピッチの影響がない
- 鋼材破壊
- 最小母材厚
- コンクリート圧縮強度 C 20/25, f_{ck,cube} = 25 N/mm² (JIS 規格 F_c ÷ 21N/mm² 相当)

許容安全荷重

计台女主何里		
		ETA-13/1038(発行 2016-12-08)によるデータ
種類		HUS3-I Flex SC 6
埋込み長	h _{nom} [mm]	55
ひび割れを想定しな	いコンクリート	
引張 N _{Ru,m}	[kN]	3,6
せん断 V _{Ru,m}	[kN]	6,0
ひび割れを想定する	コンクリート	
引張 N _{Ru,m}	[kN]	2,4
せん断 V _{Ru,m}	[kN]	6,0

a) 部分安全係数は $\gamma=1,4$ です。この部分安全係数は荷重の種類によって異なるため、各国の基準を採用してください。

材料

機械的性質

種類			HUS3-I Flex SC 6
引張強度	f_{uk}	[N/mm ²]	930
降伏強度	f _{yk}	[N/mm ²]	745
応力断面積	A_s	[mm²]	26.9
断面係数	W	[mm³]	19.6
曲げ抵抗	M ⁰ _{Rd,s}	[Nm]	21

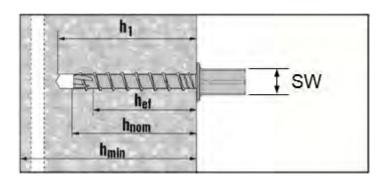
材質

種類	材料	コーティング
アンカー本体	炭素鋼	亜鉛めっき (≥5 µm)
高ナット	炭素鋼, グレード 6	亜鉛めっき (≥5 µm)
ワッシャーインジケーター	ABS 樹脂	_
はめ合いインジケーター	ABS 樹脂	_

形状寸法

寸法

種類				HUS3-I Flex SC 6		
外径		d _t	[mm]	7.85		
軸径		d _k [mm]		5.85		
首下径		ds	[mm]	6.15		
ナット二面幅		SW	[mm]	14		
6mm 3/8" 内ねじ			MS			


施工仕様

アンカーサイズ			HUS3-I Flex SC 6
埋込み長	h _{nom}	[mm]	55
穿孔径 (ビットの呼び径)	d_0	[mm]	6
*1	d _{cut} ≤	[mm]	(6.4)
取付物の下穴径	$d_f \leq$	[mm]	9
二面幅	SW	[mm]	14
穿孔長(横・下向き)	h₁≥	[mm]	65
穿孔長(上向き)	h₁≥	[mm]	58
締付トルク	T _{inst}	[mm]	25

^{*1} 付録の d_{cut} 説明をご参照ください。

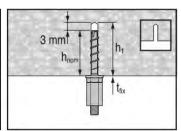
標準施工工具

種類	HUS3-I Flex SC 6
ハンマードリル	TE 2 – TE 7
ドリルビット	TE-CX 6
インパクトソケット	S-NSD 14 ¹ / ₂ (L)
インパクト	HILTI SIW 14-A or HILTI SIW 4-A

設計条件

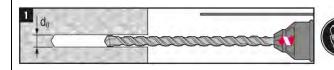
アンカー			HUS3-I Flex SC 6
埋込み長	h _{nom}	[mm]	55
有効埋込み長	h _{ef}	[mm]	42
最小母材厚	h_{min}	[mm]	100
最小アンカーピッチ	S _{min}	[mm]	35
最小へりあき	C _{min}	[mm]	35
割裂破壊による 基準アンカーピッチ	S _{cr,sp}	[mm]	126
割裂破壊による 基準へりあき	C _{cr,sp}	[mm]	63
コーン状破壊による 基準アンカーピッチ	S _{cr}	[mm]	126 (3xh _{ef})
コーン状破壊による 基準へりあき	C _{cr}	[mm]	63 (1.5xh _{ef})

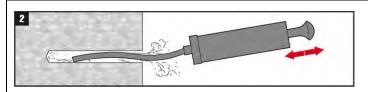

1) 基準アンカーピッチ(基準へりあき寸法)より狭いアンカーピッチ(へりあき寸法)の場合、設計荷重を低減して下さい. 詳しくは弊社担当者までお問い合わせください。



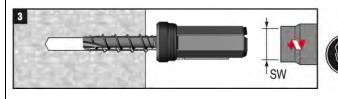
施工手順

施工方法に関する詳細は、製品の取扱説明書を参照下さい。


コンクリート施工


一般穿孔(横向き・下向き)の場合、穿孔長は 埋込み長+10mm

上向き穿孔の場合、穿孔長は埋込み長+3mm



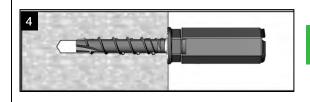
指定された穿孔径 6mm のドリルビットによる 穿孔

*穿孔時に保護メガネを着用してください。

エアーダスター等を使用し, 孔内の切粉を除去

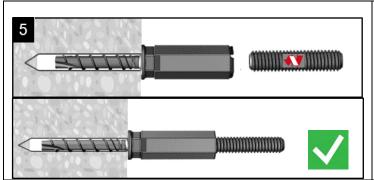
取付物を合わせてアンカーを挿入し, インパクトドライバー等でねじ込む。

*保護メガネを着用してください。


埋込み長さに合わせてインパクトドライバー等 のスピードを調整する。

インパクトソケット

サイズ 14 ¹/₂" L


ナット根元部のプラスチックのパーツが外れ、 完全に固定されたらねじ込み完了

L=35mm(赤色)

L=55mm(白色)

(目視確認)

ボルトを挿入し、プラスチックのパーツが取れたらボルト取付終了 (目視確認)

施工完了

HKD 内部コーン打込み式金属系アンカー

アンカー 特徴 - 実績の十分ある汎用製品 HKD - 日常の現場において実証、承 認、確認された製品 (M8-M20)- 簡単な目視確認による信頼性の 高い施工が可能 - 使用用途が広い HKD-S(R) - ボルトや鉄筋と合わせて中量物 取付け用 (M6-M20)- 材質やサイズのバリエーション により、広い範囲での適用が可 HKD-E(R) (M6-M20)

母材 荷重条件

ひび割れを想定し ないコンクリート

静的/ 準-静的荷重

施工条件 その他

ハンマード リル穿孔.

ETA 認証 CE 適合

PROFIS ア ンカー設計 ソフト対応

Α4 316

耐腐蝕性有

認証 / 証明書

種類	機関/研究所	No. / 発行年月日		
European Technical Assessment	CSTB, Marne-la-Vallèe	ETA-02/0032 / 2015-01-07		

a) このセクションにおける全てのデータは 2015 年 1 月 7 日発行の ETA-02/0032 に基づいています。

基準データ

本稿における全てのデータは下記条件による:

- 正しく施工されていること (施工手順参照)
- へりあき/アンカーピッチの影響がない
- 鋼材破壊
- 最小母材厚
- コンクリート圧縮強度 C 20/25, f_{ck,cube} = 25 N/mm²(JIS 規格 Fc≒21 N/mm²相当) アンカー材質 強度区分 5.8(炭素鋼)、A4-70(ステンレス鋼)

有効埋込み長

アンカーサイズ		М6	M8	M10	M12	M16	M20	3/8"	3/8"	1/2"
有効埋込み長	h _{ef} [mm]	25	30	40	50	65	80	30	40	50

基準耐力

				ルティ社内 データ ETA-02/0032, (2015-01-07)						ETA-02/0032, (2012- 10-18)		
アンカー	サイズ		M6x25	M8x30	M10x40	M12x50	M16x65	M20x80	3/8"x30	3/8"x40	1/2"x50	
313E	HKD		6,3	8,3	12,8	17,8	26,4	36,1				
引張 N _{Rk}	HKD-S, HKD-E	[kN]	6,3	8,3	12,8	17,8	26,4	36,1				
I NKK	HKD-SR, HKD-ER		6,3	8,3	12,8	17,8	26,4	36,1	-		-	
	HKD		5,0	8,6	11,0	18,3	33,8	49,0				
せん断 V _{Rk}	HKD-S, HKD-E	[kN]	5,0	7,0	8,0	14,1	21,9	34,7				
♥ RK	HKD-SR, HKD-ER		6,2	8,4	10,5	18,7	32,1	51,0	-		-	

設計耐力

			ヒルティ社内 データ	E	TA-02/0	ETA-02/0032, (2012- 10-18)					
アンカー	サイズ		M6x25	M8x30	M10x40	M12x50	M16x65	M20x80	3/8"x30	3/8"x40	1/2"x50
313E	HKD		4,2	5,5	8,5	11,9	17,6	24,0			
引張 N _{Rd}	HKD-S, HKD-E	[kN]	3,0	4,6	7,1	9,9	17,6	24,0			
Rd	HKD-SR, HKD-ER		3,0	4,6	7,1	9,9	17,6	24,0	-		-
11 / 地广	HKD	•	4,0	6,9	8,8	14,6	27,0	39,4			
せん断 V _{Rd}	HKD-S, HKD-E	[kN]	3,9	5,5	6,4	11,3	17,5	27,8			
▼ Ka	HKD-SR, HKD-ER	_	4,1	5,5	6,9	12,3	21,1	33,6	-		-

許容安全荷重 a)

可音文工刊主											
			ヒルティ社内 データ	E	TA-02/0	ETA-02/0032, (2012- 10-18)					
アンカー	サイズ		M6x25	M8x30	M10x40	M12x50	M16x65	M20x80	3/8"x30	3/8"x40	1/2"x50
213E	HKD		3,0	3,9	6,1	8,5	12,6	17,2	3,9	6,1	8,5
引張 N _{Rec}	HKD-S, HKD-E	[kN]	2,1	3,3	5,1	7,1	12,6	17,2	3,3	5,1	7,1
Rec	HKD-SR, HKD-ER		2,1	3,3	5,1	7,1	12,6	17,2	-	5,1	7,1
1111世	HKD		2,9	4,9	6,3	10,5	19,3	28,3	5,7	6,3	10,5
せん断 V _{Rec}	HKD-S, HKD-E	[kN]	2,8	3,9	4,6	8,1	12,5	19,8	3,9	4,6	8,1
▼ KeC	HKD-SR, HKD-ER		2,9	3,9	4,9	8,8	15,1	24,0	-	4,9	8,8

a) 部分安全係数は、荷重の種類ごと、国ごとの規定により決められる係数で、ここでは $\gamma=1,4$ を採用している。

材料

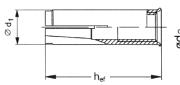
機械的特性

アンカーサー	イズ			М6	М8	M10 3/8"	M12 1/2"	M16	M20
		HKD		570	570	570	570	640	590
公称引張強度	f_{uk}	HKD-S, HKD-E	[N/mm ²]	560	560	510	510	ı	460
		HKD-SR, HKD-ER		540	540	540	540	ı	540
		HKD	_	460	460	460	480	510	470
降伏強度	f_{yk}	HKD-S, HKD-E	[N/mm ²]	440	440	410	410	ı	375
		HKD-SR, HKD-ER		355	355	355	355	ı	355
		HKD	_	20,7	26,7	32,7	60,1	105	167
応力断面積	A_s	HKD-S, HKD-E	[mm²]	20,9	26,1	28,8	58,7	-	163
		HKD-SR, HKD-ER			20,1	20,0			105
		HKD	_	32,3	54,6	82,9	184	431	850
断面係数	W	HKD-S, HKD-E	[mm³]	50	79	110	264	602	1191
		HKD-SR, HKD-ER		30	79	110	204	002	1191
Char. bending	0	強度区分 5.8 炭素鋼		7,6	18,7	37,4	65,5	167	325
resistance M ⁰ _F for rod or bolt		s HKD-SR HKD-ER A4-70 ステンレス鋼	[Nm]	11	26	52	92	187	454

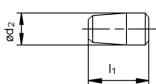
材質

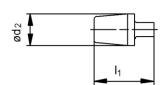
Part		Material
	HKD	冷間成型鋼 / 電気亜鉛メッキ 5 μm 以上
アンカー本体	HKD-S, HKD-E	鋼材 Fe/Zn5 電気亜鉛メッキ 5 μm 以上
	HKD-SR, HKD-ER	ステンレス鋼, 1.4401, 1.4404, 1.4571
	HKD	冷間成型鋼
拡張コーン	HKD-S, HKD-E	冷間成型鋼材
	HKD-SR, HKD-ER	ステンレス鋼, 1.4401, 1.4404, 1.4571

アンカー寸法 HKD, HKD-S, HKD-E, HKD-SR, HKD-ER

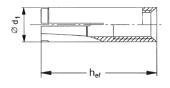

			ヒルティ社内 データ	E	ETA-02/0032, (2015-01-07)					ETA-02/0032, (2012-10- 18)		
アンカー寸法			M6x25	M8x30	M10x40	M12x50	M16x65	M20x80	3/8"x30	3/8"x40	1/2"x50	
有効埋込み長	h _{ef}	[mm]	25	30	40	50	65	80	30	40	50	
アンカー直径	d_1	[mm]	7,9	9,95	11,95	14,9	19,75	24,75	11,9	11,95	15,85	
コーン直径	d ₂	[mm]	5,1	6,5	8,2	10,3	13,8	16,4	8,2	7,86	10,2	
コーンの長さ	l ₁	[mm]	10	12	16	20	29	30	12	16.2	20	

アンカー本体


HKD

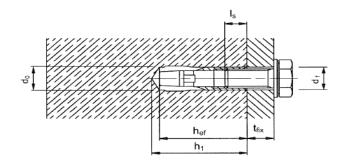

www.

拡張コーン



HKD-S and HKD-SR

HKD-E and HKD ER


施工

施工詳細情報

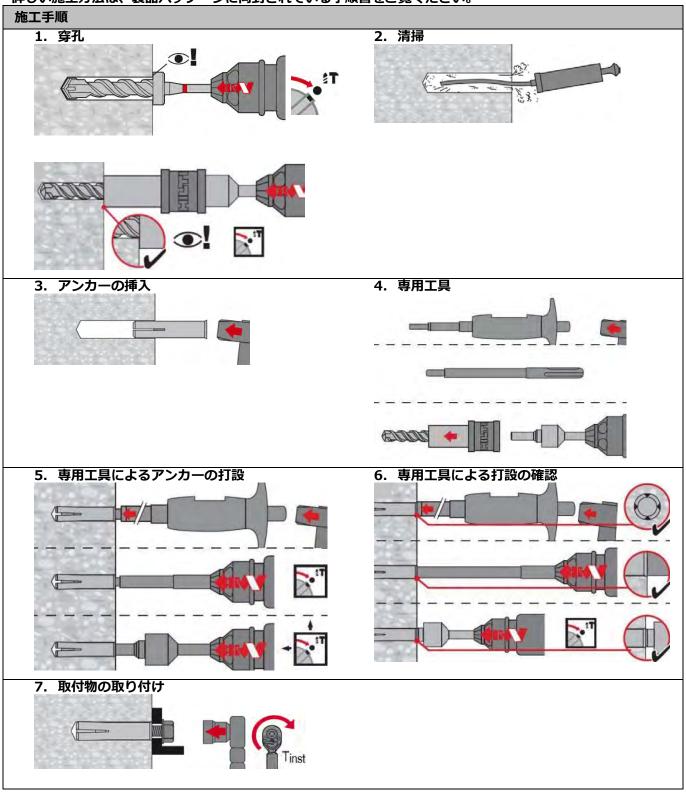
			ヒルティ社内 データ	E	ETA-02/0	032, (20	15-01-07)	ETA-02/0032, (2012-10- 18)		
アンカーサイズ			M6x25	M8x30	M10x40	M12x50	M16x65	M20x80	3/8"x30	3/8"x40	1/2"x50
有効埋込み長	h _{ef}	[mm]	25	30	40	50	65	80	30	40	50
穿孔径(ビットの呼び 径)	d _o	[mm]	8	10	12	15	20	25	12	12	16
*1	d _{cut} ≤	[mm]	(8,45)	(10,5)	(12,5)	(15,5)	(20,5)	(25,5)	(12,5)	(12,5)	(16,5)
穿孔長	$h_1 \ge$	[mm]	27	33	43	54	70	85	33	43	54
最小ねじ込み深さ	$I_{s,min}$	[mm]	6	8	10	12	16	20	10	10	12
内ねじ最大深さ	$I_{s,max}$	[mm]	12	14,5	18	23,5	30,5	42	13	18	22
取付物の下穴径	d _f ≤	[mm]	7	9	12	14	18	22	12	12	14
最大締付トルク	T _{ins}	[Nm]	4	8	15	35	60	100	15	15	35

^{*1} 付録の d_{cut} 説明をご参照ください。

推奨施工工具

アンカーサイズ		M6	M6 M8 M10 M10 3/8" 3/8"				M16	
ロータリーハンマー	ドリル		TE 1 -	- TE 3		TE 16 -	- TE 50	
機械打ち専用工具	HSD-M	6x25	8x30	10x30	10x40	12x50	16x65	
手打ち専用工具	HSD-G	6x25	8x30	10x30	10x40	12x50	16x65	
その他の工具			ハンマー, トルクレンチ, ダストポンプ					

施工条件


		ヒルティ社内 データ	E	ETA-02/0	032, (20	15-01-07)			
アンカーサイズ		M6x25	M8x30	M10x40	M12x50	M16x65	M20x80	3/8"x30	3/8"x40	1/2"x50
最小母材厚	h _{min} [mm]	100	100	100	100	130	160	100	100	100
最小アンカーピッチ 最小へりあき	s _{min} [mm]	60	60	80	125	130	160	60	80	125
HKD-S (R) / HKD-E (R)	c _{min} [mm]	88	105	140	175	230	280	105	140	175
最小アンカーピッチ	_{Smin} [mm]	80	60	80	125	130	160	60	80	125
HKD	c ≥ [mm]	140	105	140	175	230	280	105	140	175
最小へりあき	c _{min} [mm]	100	80	140	175	230	280	80	140	175
HKD	s ≥ [mm]	150	120	80	125	130	160	120	80	125
割裂破壊を考慮した基準 アンカーピッチ及び基準	s _{cr,sp} [mm]	200	210	280	350	455	560	210	280	350
へりあき HKD	c _{cr,sp} [mm]	100	105	140	175	227	280	105	140	175
コンクリートコーン破壊を 考慮した基準アンカーピッ チ及び基準へりあき	s _{cr,N} [mm]	80	90	120	150	195	240	90	120	150
HKD / HKDS-(R) / HKD-E(R)	c _{cr,N} [mm]	40	45	60	75	97	120	45	60	75
割裂破壊を考慮した基準 アンカーピッチ及び基準	s _{cr,sp} [mm]	176	210	280	350	455	560	210	280	350
へりあき HKD-S(R) / HKD-E(R)	c _{cr,sp} [mm]		105	140	175	227	280	105	140	175

基準アンカーピッチ(基準へりあき)より小さなアンカーピッチ(へりあき)の場合、設計荷重は低減する必要があります。

施工手順

*詳しい施工方法は、製品パッケージに同封されている手順書をご覧ください。

HKV 内部コーン打込み式金属系アンカー

アンカー種類 特徴

HKV (M8-M16) (3/8''-1/2'')

- 実績豊富な汎用製品
- 毎日の現場蓄積による確認やテスト、 承認
- 簡単な目視確認による信頼性の高い 施工が可能
- 多目的(多用途・汎用)
- ボルトや全ねじによる中量物取付け用
- 多くのアプリケーションに適用可能な 材料とサイズを利用できる

適用母材

コンクリート (ひび割れを想定しない)

基本荷重データ(単体アンカーでの留付け)

本項の全てのデータは下記条件の場合に適用されます:

- 正しく施工されていること(施工手順参照)
- へりあき/アンカーピッチの影響がない
- 指定されたコンクリート仕様
- 最小母材厚
- コンクリート圧縮強度 C 20/25, f_{ck,cube} = 25 N/mm²(JIS 規格 Fc≒21 N/mm² 相当) ボルト材質は強度区分 5.8(炭素鋼)または A4-70(ステンレス鋼)

有効埋込み長さ

アンカーサイズ	ミリサイズ		M8x30	-	-	M12x50	M16x65
アンガージャス	インチサイズ		-	3/8"x30	3/8"x40	1/2"x50	-
有効埋込み長	h _{ef}	[mm]	30	30	40	50	65

基準強度

アンカーサイズ	ミリサイズ	ミリサイズ		ミリサイズ		ミリサイズ		-	-	M12x50	M16x65
アンカーシャス	インチサイズ		-	3/8"x30	3/8"x40	1/2"x50	-				
引張 N _{Rk}	HKV [l	κN]	5,9	5,9	9,1	12,7	26,5				
せん断 V _{Rk}	HKV [l	κN]	8,6	10,0	11,0	18,3	33,8				

設計耐力

アンカーサイズ	ミリサイズ		M8x30	-	-	M12x50	M16x65
アンカーショス	インチサイズ			3/8"x30	"3/8x40	"1/2x50	-
引張 N _{Rd}	HKV	[kN]	3,9	3,9	6,1	8,5	17,6
せん断 V _{Rd}	HKV	[kN]	8,6	8,0	8,0	14,6	27,0

許容安全荷重 a)

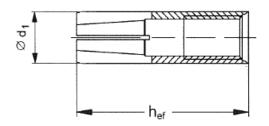
アンカーサイズ	ミリサイズ		M8x30	-	-	M12x50	M16x65
7 2 3 1 7	インチサイズ		-	3/8"x30	3/8"x40	"1/2x50	-
引張 N _{Rec}	HKV	[kN]	2,8	2,8	4,3	6,0	12,6
せん断 V _{Rec}	HKV	[kN]	4,9	5,7	5,7	10,5	19,3

部分安全係数は一般にγ=1,4 として考慮されています。この部分安全係数は荷重の種類によって異なり、国際基準から得られたもの です。ETAG001 によると部分安全係数は常時荷重では $\gamma G=1,35$ 、変動荷重では $\gamma G=1,5$ となっています。

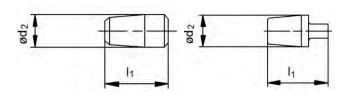
材料

機械的特性

アンカーサイズ	ミリサイズ		M8x30	-	-	M12x50	M16x50
アフカーショス	インチサイ	ズ	ı	3/8"x30	3/8"x40	1/2"x50	-
引張強度	f_{uk}	[N/mm ²]	570	570	570	570	640
降伏点強度	f_{yk}	[N/mm ²]	460	460	460	460	510
応力断面積	٨	[mm2]	26,7	-	ı	60,1	105
	A_s	[mm²]	ı	39,9	39,9	70,6	-
断面係数	W	[mm³]	54,6	-	ı	184	431
四面示数	VV		i	97,4	97,4	229,8	-
ボルト強度区分 5.8 の) _M 0	[Nm]	18,7	-	-	65,5	167
許容曲げモーメント	I*I Rk,s	[INIII]	-	23,9	24,5	42,4	-


材料品質

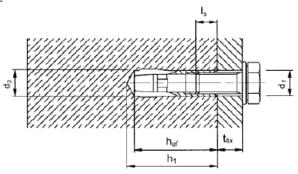
部材	材料
アンカー本体	鋼材/電気亜鉛めっき 5µm
拡張コーン	鋼材


アンカー寸法

アンカーサイズ	ミリサイズ		M8x30	-	-	M12x50	M16x65
アンカージャス	インチサイズ		-	3/8"x30	3/8"x40	1/2"x50	-
有効埋込み長	h _{ef}	[mm]	30	30	40	50	65
アンカー径	d	[mm]	9,95	-	11,95	14,9	19,75
アンガー住	d ₁	[mm]	-	11,9	11,95	15,85	-
コーン径		[mm]	6,5	8,2	-	10,3	13,8
コーク性	d_2	[mm]	-	0,2	7,86	10,2	-
コーン長	ı	[mm]	12	12	-	20	29
コーク技	11	[mm]	12	12	16,2	20	-

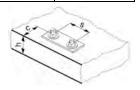
アンカー本体

拡張コーン



施工

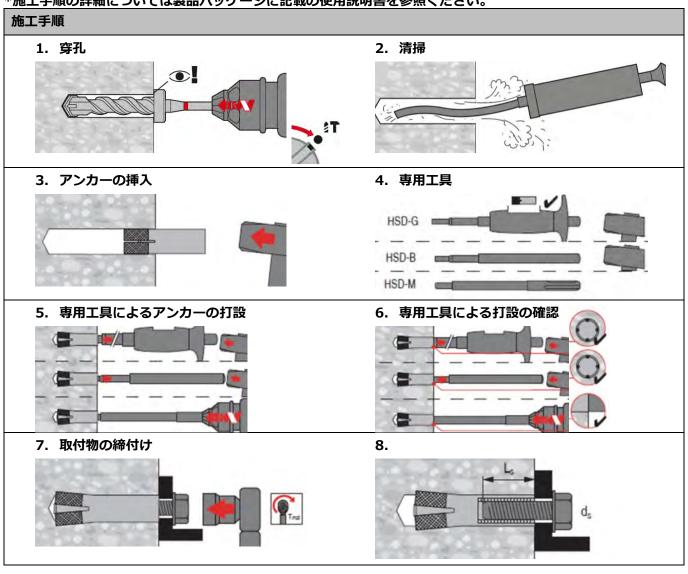
施工詳細


アンカーサイズ -	ミリサイズ		M8x30	-	-	M12x50	M16x50
777-947 -	インチサイズ		-	3/8"x30	3/8"x40	"1/2x50	-
有効埋込み長	h_{ef}	[mm]	30	30	40	50	65
穿孔径(ビットの呼び谷	۶) ٩	[mm]	10	12	12	15	20
好加生(ビットの近の15 	$ \stackrel{\scriptstyle \bullet}{=}) d_0 $	[mm]	10	12	12	16	20
*1	d <	[mm]	(10,5)	-	(12,5)	(15,5)	(20,5)
1	u _{cut} ≤	[mm]	(10,5)	(12,5)	(12,3)	(16,5)	(20,3)
穿孔長	h ₁ ≥	[mm]	33	33	43	54	70
取付物の下穴径	d _f ≤	[mm]	9	12	12	14	18
最大締付けトルク	T_{inst}	[Nm]	8	15	15	35	60
ねじ込み長	I _{s,min}	[mm]	8	10	10	12	16
1402071	I _{s,max}	[mm]	12	10,5	15,5	20,0	25,5

^{*1} 付録の d_{cut} 説明をご参照ください。

施丁冬件

ルエネロ						
アンカーサイズ	ミリサイズ	M8x30	-	-	M12x50	M16x65
アンカーシャス	インチサイズ	-	3/8"x30	3/8"x40	1/2"x50	-
母材厚	$h_{min} \ge [mm]$	100	100	100	100	130
アンカーピッチ	$s_{min} \ge [mm]$	200	200	200	200	260
へりあき	$c_{min} \geq \lceil mm \rceil$	150	150	150	150	195


施工工具

アンカーサイズ	ミリサイズ	ミリサイズ M8x30 -		-	M12x50	M16x65		
アンカーシャス	インチサイズ	-	3/8"x30	3/8"x40	1/2"x50	-		
ロータリーハンマード	1111		TE 1 – TE 30)	TE 16 -	- TE 50		
	יטוני		TE 1 -	TE 30		-		
機械式セッティングツ	ール HSD-M	8x30	-	-	12x50	16x65		
一一一	—)v пзט-м	-	3/8x30	3/8x40	1/2x50	-		
手打ち式セッティング	W_II	8x30	-	-	1/2x50	16x65		
子打らびにかりょうか	クール пзט-G	-	3/8x30	3/8x40	1/2x50	-		
その他の工具		ハンマー、トルクレンチ、ダストポンプ(ブロワー)						

施工手順

*施工手順の詳細については製品パッケージに記載の使用説明書を参照ください。

HPS-1 プラスチック系 打込み式アンカー

母材 特徴

HPS-1 (M4-M8)

- 間仕切り用ランナー、フラット バーの留付け
- 耐衝撃、耐熱性
- 高品質プラスチック

母材

ひび割れを想定しないコンクリート

レンガ

中空レンガ

ALC

基準データ

本稿における全てのデータは下記条件による:

- 正しく施工されていること (施工手順参照)
- へりあき/アンカーピッチの影響がない
- 表で指定されている母材
- 最小母材厚
- 温度が40℃以上の場合には耐力は低下

許容安全荷重 a)

アンカーサイズ		4/0	5/0	5/5- 5/15	6/0- 6/25	6/30- 6/40	8/0	8/10- 8/40	8/60- 8/100
コンクリート ≥ C16/20	N _{Rd} [kN]	0,05	0,10	0,15	0,25	0,25	0,30	0,40	0,40
	V _{Rd} [kN]	0,15	0,30	0,35	0,55	0,35	0,50	0,90	0,50
建築用レンガ,	N _{Rd} [kN]	0,05	0,10	0,15	0,25	0,25	0,30	0,40	0,40
(12 穴) クラス B	V _{Rd} [kN]	0,15	0,30	0,35	0,55	0,35	0,50	0,90	0,50
中空レンガ(3 穴)	N _{Rd} [kN]	0,05	0,10	0,15	0,20	0,20	0,25	0,30	0,30
中主レンカ(3 八) 	V _{Rd} [kN]	0,15	0,30	0,35	0,55	0,35	0,50	0,90	0,55
Thermalite ブロック,	N _{Rd} [kN]	-	ı	0,08	0,15	0,15	0,20	0,25	0,25
軽量(7 N/mm ²)	V _{Rd} [kN]	-	-	0,15	0,25	0,15	0,40	0,40	0,25
Thermalite ブロック,	N_{Rd} [kN]	-	-	0,05	0,08	0,08	-	0,12	0,12
軽量(1/2 N/mm ²)	V _{Rd} [kN]	-	-	0,10	0,15	0,10	-	0,25	0,15
ALC	N_{Rd} [kN]	-	-	0,08	0,10	0,10	-	0,15	0,15
(AAC 4, ACC 6)	V _{Rd} [kN]	-	1	0,10	0,12	0,10	-	0,30	0,20
押出し成型レンガ,	N _{Rd} [kN]	0,05	0,10	0,15	0,20	0,20	0,25	0,35	0,35
Boral 10	V _{Rd} [kN]	0,15	0,25	0,30	0,40	0,25	0,50	0,90	0,55

a) 全体安全係数は $\gamma=5$ 、部分安全係数は $\gamma=1.4$ を採用している。

材料

材質

部位	材料
プラスチックスリーブ	ポリアミド 6.6
	炭素鋼, 電気亜鉛メッキ 5 µm 以上
スクリュー	ステンレス鋼, グレード A2
	ステンレス鋼, グレード A2, 銅メッキ

施工

施工温度範囲

-10 °C \sim +40°C

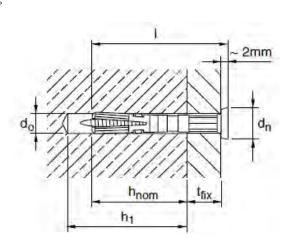
使用温度範囲

ヒルティ HPS アンカーは以下の温度範囲の中で使用できます。

温度範囲	母材温度	長期最大母材温度	短期最大母材温度
温度範囲	-40 °C \sim +80 °C	+50 °C	+80 °C

短期最大母材温度

一日程度の短いサイクルの気温の変化に伴って、母材温度が変化するときの最大母材温度を指します。

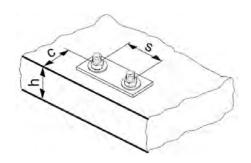

長期最大母材温度

長期間にわたる継続的な気温変化に伴って、母材温度が変化するときの最大母材温度を指します。

施工詳細情報 HPS-1

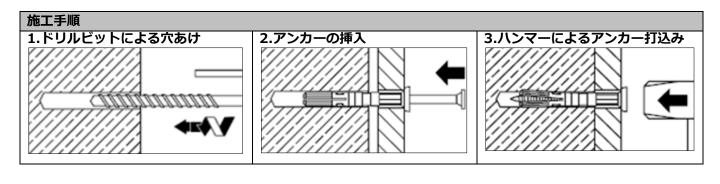
アンカーサイズ			HPS-1 4	HPS-1 5	HPS-1 6	HPS-1 8
穿孔径(ビットの呼び径)	d _o	[mm]	4	5	6	8
*1	d _{cut} ≤	[mm]	(4,35)	(5,35)	(6,4)	(8,45)
穿孔長	h ₁ ≥	[mm]	25	30	40	50
埋込み長	h _{nom}	[mm]	20	20	25	30
アンカー全長	-	[mm]	21,5	22 - 37	27 - 67	28,5 - 132,5
最大取付物厚	t_{fix}	[mm]	2	15	40	100

^{*1} 付録の d_{cut} 説明をご参照ください。



標準施工工具

アンカーサイズ	HPS-1 4	HPS-15	HPS-1 6	HPS-18
ロータリーハンマードリル		TE2 -	TE16	
その他の工具		スクリュー	・ドライバー	


施工条件 HPS-1

アンカーサイズ			HPS-1 4	HPS-1 5	HPS-1 6	HPS-1 8
アンカーピッチ	S	[mm]	20	25	30	35
へりあき	С	[mm]	20	25	30	35

施工手順

*詳しい施工方法は、製品パッケージに同封されている手順書をご覧ください。

HUD-1 プラスチック系ねじ込み式アンカー

アンカー 利点

HUD-1 (M5-M14)

- 面一施工で美しい意匠
- ねじ長選択可能
- 多様な母材へ施工可能

母材

ひび割れを想定しない

コンクリート

レンガ 中空レンガ

ALC

石膏ボード

基本データ(単体アンカー)

本項の全てのデータは下記条件でのみ有効です:

所定のアンカー施工(施工条件・手順参照)

指定の木ねじを使用した場合

へりあき/アンカーピッチの影響がない

上表記載母材

最小母材厚

基準耐力

アンカーサイズ		5x25		6x30		8x40		10x50		12x60	14x70	
ねじの種類 ^{d)}			W	С	W	С	W	С	W	С	W	W
サイズ			4	4	5	5	6	6	8	8	10	12
DIN			96		96		96		96		571	571
コンクリート ≥	N_{Rk}	[kN]	1,5	0,5	2,75	1,75	4,25	2,5	7	-	10	15
C16/20	$V_{Rk} \\$	[kN]	2	-	4,5	-	6,25	-	11	-	15	28
レンガ	N_{Rk}	[kN]	0,85	0,3	1,75	0,75	3	1,75	4	-	5	5 ^{a)}
Mz 20	V_{Rk}	[kN]	1,2	-	1,5	-	2,2	-	-	-	-	-
灰砂レンガ	N_{Rk}	[kN]	1,25	0,75	2,5	1,5	4,25	2	5	-	7,5	7,5 ^{a)}
KS 12	V_{Rk}	[kN]	1,25	-	2,8	-	3,7	-	6,6	-	-	-
中空レンガ	N_{Rk}	[kN]	0,4	0,25	0,5	0,4	1	0,6	1,25	-	1,4	1,6
HlzB 12	V_{Rk}	[kN]	1,15	-	1,75	-	-	-	-	-	-	-
中空レンガ HlzB 12 – 15mm	N_{Rk}	[kN]	0,4	0,25	0,75	0,5	1,25	0,75	1,5	-	1,75	2
左官仕上げ	V_{Rk}	[kN]	1,15	-	1,75	-	-	-	-	-	-	-
ALC	N_{Rk}	[kN]	0,3	0,2	0,5	0,3	0,75	0,5	1	-	1,25	1,5
AAC 2	V_{Rk}	[kN]	0,2	-	0,25	-	0,4	-	-	-	-	-
ALC	N_{Rk}	[kN]	0,5	0,3	0,75	0,5	1,5	1	2	-	2,5	3
AAC 4	V_{Rk}	[kN]	0,65	-	0,9	-	1,5	-	-	-	-	-
石膏ボード	N_{Rk}	[kN]	0,2	0,3	0,25	0,4	0,3	0,5	-	0,75 b)	-	-
厚み 12,5mm	V_{Rk}	[kN]	0,45	-	0,7	-	-	-	-	-	-	-
石膏ボード	N _{Rk}	[kN]	0,3	0,3	0,4	0,4	0,5	0,5	0,75 b)	1 ^{b)}	1,5 ^{c)}	-
厚み 2x12,5mm	V_{Rk}	[kN]	0,45	-	0,7	-	-	-	-	-	-	-
繊維補強石膏板	N_{Rk}	[kN]	0,45	-	0,6	-	0,9	-	-	-	-	-
厚み 12,5mm	V_{Rk}	[kN]	0,72	-	0,96	-	1,44	-	-	-	-	-
繊維補強石膏板	N_{Rk}	[kN]	0,45	-	1,2	-	1,8	-	2,1	-	-	-
厚み 2x12,5mm	V_{Rk}	[kN]	0,72	-	1,92	-	2,88	-	3,36	-	1	-

a) 6mm ねじのみ

耐力データは記載されているねじのみ有効であり、他の種類のねじでは耐力が低減することがあります

b) 8mm ねじのみ

c) 10mm ねじのみ

d) W: 木ねじ C: 合板(チップボード)用ねじ

設計耐力

アンカーサイズ			5x	25	6x	30	8x	40	10	x50	12x60	14x70
ねじの種類 ^{d)}			W	С	W	С	W	С	W	С	W	W
サイズ			4	4	5	5	6	6	8	8	10	12
DIN			96		96		96		96		571	571
コンクリート ≥	N_{Rd}	[kN]	0,42	0,14	0,77	0,49	1,19	0,70	1,96	-	2,80	4,20
C16/20	V_{Rd}	[kN]	0,56	ı	1,26	1	1,75	ı	3,08	-	4,20	7,84
レンガ	N_{Rd}	[kN]	0,24	0,08	0,49	0,21	0,84	0,49	1,12	-	1,40	1,40 ^{c)}
Mz 20	V_{Rd}	[kN]	0,34	-	0,42	1	0,62	ı	-	-	ı	-
灰砂レンガ	N_{Rd}	[kN]	0,35	0,21	0,70	0,42	1,19	0,56	1,40	-	2,10	2,10 ^{c)}
KS 12	V_{Rd}	[kN]	0,35	-	0,78	-	1,04	-	1,85	-	-	-
中空レンガ	N_{Rd}	[kN]	0,11	0,07	0,14	0,11	0,28	0,17	0,35	-	0,39	0,45
HlzB 12	V_{Rd}	[kN]	0,32	-	0,49	-	-	-	-	-	-	-
中空レンガ HlzB 12 - 15mm	N_{Rd}	[kN]	0,11	0,07	0,21	0,14	0,35	0,21	0,42	-	0,49	0,56
左官仕上げ	V_{Rd}	[kN]	0,32	-	0,49	-	-	-	-	-	-	-
ALC	N_{Rd}	[kN]	0,08	0,06	0,14	0,08	0,21	0,14	0,28	-	0,35	0,42
AAC 2	V_{Rd}	[kN]	0,06	-	0,07	-	0,11	-	-	-	-	-
ALC	N_{Rd}	[kN]	0,14	0,08	0,21	0,14	0,42	0,28	0,56	-	0,70	0,84
AAC 4	V_{Rd}	[kN]	0,18	-	0,25	-	0,42	-	-	-	-	-
石膏ボード	N_{Rd}	[kN]	0,06	0,08	0,07	0,11	0,08	0,14	-	0,21 ^{a)}	-	-
厚み 12,5mm	V_{Rd}	[kN]	0,13	-	0,20	-	-	-	-	-	-	-
石膏ボード	N_{Rd}	[kN]	0,08	0,08	0,11	0,11	0,14	0,14	0,21 ^{a)}	0,28 ^{a)}	0,42 b)	
厚み 2x12,5mm	V_{Rd}	[kN]	0,13	-	0,20	-	-	-	-	-	-	-
繊維補強石膏板	N_{Rd}	[kN]	0,13	-	0,17	-	0,25	-	-	-	-	-
厚み 12,5mm	V_{Rd}	[kN]	0,20	-	0,27	-	0,40	-	-	-	-	-
繊維補強石膏板	N_{Rd}	[kN]	0,13	-	0,34	-	0,50	-	0,59	-	-	-
厚み 2x12,5mm	V_{Rd}	[kN]	0,20	-	0,54	-	0,81	-	0,94	-	-	-

a) 6mm ねじのみ

耐力データは記載されているねじのみ有効であり、他の種類のねじでは耐力が低減することがあります

b) 8mm ねじのみ

c) 10mm ねじのみ

d) W: 木ねじ C: 合板(チップボード)用ねじ

許容安全荷重 e)

アンカーサイズ			5x	25	6x	30	8x	40	10	<50	12x60	14x70
ねじの種類 ^{d)}			W	С	W	С	W	С	W	С	W	W
コンクリート≥	N_{Rec}	[kN]	0,3	0,1	0,55	0,35	0,85	0,5	1,4	-	2	3
C16/20	V_{Rec}	[kN]	0,4	-	0,9	-	1,25	-	2,2	-	3	5,6
レンガ	N_{Rec}	[kN]	0,17	0,06	0,35	0,15	0,6	0,35	0,8	-	1	1
Mz 20	V_{Rec}	[kN]	0,24	-	0,3	-	0,44	-	-	-	-	-
灰砂レンガ	N_{Rec}	[kN]	0,25	0,15	0,5	0,3	0,85	0,4	1	-	1,5	1,5
KS 12	V_{Rec}	[kN]	0,25	-	0,56	-	0,74	-	1,32	-		
中空レンガ	N_{Rec}	[kN]	0,08	0,05	0,1	0,08	0,2	0,12	0,25	-	0,28	0,32
HlzB 12	V_{Rec}	[kN]	0,23	-	0,35	-	-	-	-	-	-	-
中空レンガ HlzB 12 - 15mm	N_{Rec}	[kN]	0,08	0,05	0,15	0,1	0,25	0,15	0,3	-	0,35	0,4
左官仕上げ	V_{Rec}	[kN]	0,23	-	0,35	-	-	-	-	-	-	-
ALC	N_{Rec}	[kN]	0,06	0,04	0,1	0,06	0,15	0,1	0,2	-	0,25	0,3
AAC 2	V_{Rec}	[kN]	0,04	-	0,05		0,08			-		
ALC	N_{Rec}	[kN]	0,1	0,06	0,15	0,1	0,3	0,2	0,4	-	0,5	0,6
AAC 4	V_{Rec}	[kN]	0,13	ı	0,18	1	0,3	-	ı	ı	ı	-
石膏ボード	N_{Rec}	[kN]	0,04	0,06	0,05	0,08	0,06	0,1	-	0,15	ı	-
厚み 12,5mm	V_{Rec}	[kN]	0,09	-	0,14	-	-	-	-	-	-	-
石膏ボード	N_{Rec}	[kN]	0,06	0,06	0,08	0,08	0,1	0,1	0,15	0,2	0,3	-
厚み 2x12,5mm	V_{Rec}	[kN]	0,09	-	0,14	-	-	-	-	-	-	-
繊維補強石膏板	N_{Rec}	[kN]	0,09	-	0,12	-	0,18	-	-	-	-	-
厚み 12,5mm	V_{Rec}	[kN]	0,14	-	0,19	-	0,29	-	-	-	-	-
繊維補強石膏板	N_{Rec}	[kN]	0,09	-	0,24	-	0,36	-	0,42	-	-	-
厚み 2x12,5mm	V_{Rec}	[kN]	0,14	-	0,38	-	0,58	-	0,67	-	-	-

- a) 6mm ねじのみ
- b) 8mm ねじのみ
- c) 10mm ねじのみ
- d) W: 木ねじ C: 合板(チップボード)用ねじ

耐力データは記載されているねじのみ有効であり、他の種類のねじでは耐力が低減することがあります

e) 全体安全係数は基準耐力から $\gamma=5$ 、部分安全係数は設計耐力から $\gamma=1,4$ としています

材料

アンカースリーブ	材質
樹脂	ポリアミド 6

施工

適用温度の範囲

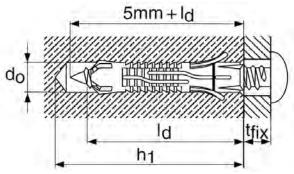
以下の温度の範囲で使用が可能です.

温度範囲	母材温度	長期最大母材温度	短期最大母材温度	
温度範囲	-40 °C ∼ +80 °C	+50 °C	+80 °C	

短期最大母材温度

一日の気温変化で発生する母材温度変化の最大値.

長期最大母材温度

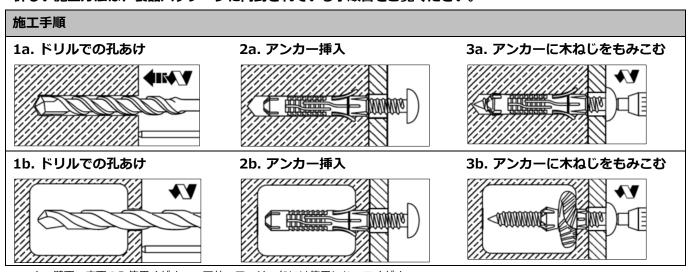

ある一定期間の温度変化で発生する母材温度変化の最大値.

施工詳細

アンカーサイズ			5x25	6x30	8x40	10x50	12x60	14x70
穿孔径	d _o	[mm]	5	6	8	10	12	14
*1	d_{cut}	[mm]	(5,35)	(6,4)	(8,45)	(10,45)	(12,5)	(14,5)
穿孔長	h ₁ ≥	[mm]	35	40	55	65	80	90
埋込み長	h _{nom}	[mm]	25	30	40	50	60	70
アンカー全長	ld	[mm]	25	30	40	50	60	70
最大取付物厚	t _{fix}	[mm]	ねじ長による					
施工温度		[°C]	-10 ~ +40					
木ねじ径 ^{a)}	d	[mm]	3,5 - 4	4,5 - 5	5 - 6	7 - 8	8 - 10	10 - 12

a) 耐力データは木ねじの径に依存します。他のタイプのねじでは耐力データ値が低減することがあります。太字のねじ径に関しては本 データを参照ください (^{a), b), c)} を除く) .

^{*1} 付録の d_{cut} 説明をご参照ください。



施工工具

アンカーサイズ	5x25	6x30	8x40	10x50	12x60	14x70	5x25
ロータリーハンマードリル	TE 2- TE16						
その他の工具	スクリュードライバー						

施工手順 a)

*詳しい施工方法は、製品パッケージに同封されている手順書をご覧ください。

a) 壁面・床面のみ使用ください。天井・ファサードには使用しないでください.

HUD-L プラスチック系ねじ込み式アンカー

アンカー 利点

HUD-L (M6-M8) - 軟母材への施工やリフォームに 最適なアンカー

- 多様な母材へ施工可能

HUD-L (M10)

母材

ひび割れを想定しない コンクリート

レンガ

中空レンガ

ALC

石膏ボード

基本データ(単体アンカー)

本項の全てのデータは下記条件でのみ有効です:

所定のアンカー施工(施工条件・手順参照) 指定の木ねじを使用した場合 荷重方向の影響がない へりあき/アンカーピッチの影響がない 上表記載母材

最小母材厚

基準耐力

アンカーサイズ			6x50	8x60	10x70
ねじの種類 ^{c) d)}			W	W	W
サイズ			4,5x80	5x90	8
DIN			96	96	571
コンクリート ≥ C16/20	F_{Rk}	[kN]	1,15	1,4	9,0
レンガ Mz 12	F_{Rk}	[kN]	0,85	1,0	-
レンガ Mz 20	F_{Rk}	[kN]	-	-	7,0
灰砂レンガ KS 12	F_{Rk}	[kN]	0,85	1,0	2
中空レンガ Hlz 12 ^{a)}	F_{Rk}	[kN]	0,5	0,75	1,5
中空灰砂レンガ KSL 12	F_{Rk}	[kN]	0,7	0,8	-
ALC AAC 2 a)	F_{Rk}	[kN]	0,25	0,55	2,0
石膏ボード 厚み 2x12,5mm ^{a)}	F_{Rk}	[kN]	0,3	0,7	0,6 ^{b)}

a) 回転のみ穿孔

- b) 六角頭ねじを手動で留め付けた場合に最適
- 耐力データは記載されているねじのみ有効であり、他の種類のねじでは耐力が低減することがあります. c)

W: 木ねじ d)

設計耐力

アンカーサイズ			6x50	8x60	10x70
ねじの 種類 ^{c) d)}			W	W	W
サイズ			4,5x80	5x90	8
DIN			96	96	571
コンクリート ≥ C16/20	F_{Rd}	[kN]	0,32	0,39	2,52
レンガ Mz 12	F_{Rd}	[kN]	0,24	0,28	-
レンガ Mz 20	F_{Rd}	[kN]	-	-	1,96
灰砂レンガ KS 12	F_{Rd}	[kN]	0,24	0,28	0,56
中空レンガ Hlz 12 ^{a)}	F_{Rd}	[kN]	0,14	0,21	0,42
中空灰砂レンガ KSL 12	F_{Rd}	[kN]	0,20	0,22	-
ALC AAC 2 a)	F_{Rd}	[kN]	0,07	0,15	0,56
石膏ボード 厚み 2x12,5mm ^{a)}	F_{Rd}	[kN]	0,08	0,20	0,17 ^{b)}

- a) 回転のみ穿孔
- b) 六角頭ねじを手動で留め付けた場合に最適
- c) 耐力データは記載されているねじのみ有効であり、他の種類のねじでは耐力が低減することがあります.
- d) W: 木ねじ

許容安全荷重 e)

アンカーサイズ		6x50	8x60	10x70
ねじの 種類 ^{c) d)}		W	W	W
サイズ		4,5x80	5x90	8
DIN		96	96	571
コンクリート ≥ C16/20	F _{Rec} [kN] 0,23	0,28	1,8
レンガ Mz 12	F _{Rec} [kN] 0,17	0,2	-
レンガ Mz 20	F _{Rec} [kN] -	-	1,4
灰砂レンガ KS 12	F _{Rec} [kN] 0,17	0,2	0,4
中空レンガ Hlz 12 ^{a)}	F _{Rec} [kN] 0,1	0,15	0,3
中空灰砂レンガ KSL 12	F _{Rec} [kN] 0,14	0,16	-
ALC AAC 2 a)	F _{Rec} [kN] 0,05	0,11	0,4
石膏ボード 厚み 2x12,5mm ^{a)}	F _{Rec} [kN] 0,06	0,14	0,12 b)

- a) 回転のみ穿孔
- b) 六角頭ねじを手動で留め付けた場合に最適
- c) 耐力データは記載されているねじのみ有効であり、他の種類のねじでは耐力が低減することがあります.
- d) W: 木ねじ
- e) 全体安全係数は基準耐力から $\gamma = 5$ 、部分安全係数は設計耐力から $\gamma = 1,4$ としています.

材料

Material quality

アンカースリーブ	材質
樹脂	ポリアミド 6

施工

施工温度

-10°C \sim + 40°C

適用温度の範囲

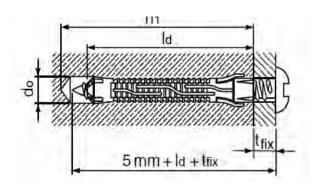
以下の温度の範囲で使用が可能です.

温度範囲	母材温度	長期最大母材温度	短期最大母材温度
温度範囲	-40 °C ∼ +80 °C	+50 °C	+80 °C

短期最大母材温度

一日の気温変化で発生する母材温度変化の最大値.

長期最大母材温度

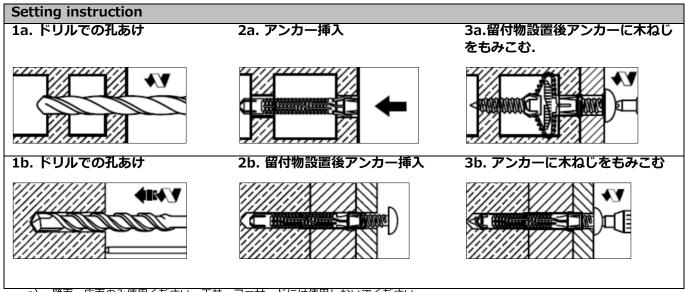

ある一定期間の温度変化で発生する母材温度変化の最大値.

施工詳細

アンカーサイズ			6x50	8x60	10x70
穿孔径	d _o	[mm]	6	8	10
*1	d_{cut}	[mm]	(6,4)	(8,45)	(10,45)
穿孔長	h ₁ ≥	[mm]	70	80	90
埋込み長	h_{nom}	[mm]	47	57	70
アンカー全長	ld	[mm]	47	57	70
最大取付物厚	t_{fix}	[mm]		ねじ長による	
母材内への推奨ねじ長	I	[mm]	55	65	75
木ねじ径 ^{a)}	d	[mm]	4,5 - 5	5 - 6	7 - 8

a) 耐力データは木ねじの径に依存します。他のタイプのねじでは耐力データ値が低減することがあります。太字のねじ径に関しては本 データを参照ください (^{a), b), c)} を除く).

^{*1} 付録の d_{cut} 説明をご参照ください。


施工工具

アンカーサイズ	6x50	8x60	10x70			
ロータリーハンマードリル	TE 2- TE16					
その他の工具	スクリュードライバー					

施工手順 a)

*詳しい施工方法は、製品パッケージに同封されている手順書をご覧ください。

a) 壁面・床面のみ使用ください。天井・ファサードには使用しないでください.

HLD プラスチックアンカー

アンカー種類	特長
HLD (M10)	プラスチックアンダーカット アンカー簡単な施工ドライウォール用途

母材

ドライウォール

標準荷重データ

本項における全てのデータは下記条件による。

- 所定のアンカー施工 (施工条件・手順参照) へりあきやアンカーピッチの影響がない 表に記載された母材

- 表示に記載された荷重データは荷重方向によらない

標準耐力

アンカーサイズ				HLD 2	HLD 3	HLD 4
	固着原理 ^{a)}					
石こうボード 厚さ 12,5mm	В	F_{Rk}	[kN]	0,4	0,4	0,4
繊維補強石こうボード 厚さ 12,5mm	Α	F_Rk	[kN]	0,3	-	-
繊維補強石こうボード 厚さ 2x12,5mm	А	F_Rk	[kN]	-	0,6	-
中空レンガ	A / B	F_{Rk}	[kN]	0,75	0,75	
コンクリート ≥ C16/20	C	F_{Rk}	[kN]	1,25	2	2,5

a) 施工手順参照

設計耐力

アンカーサイズ				HLD 2	HLD 3	HLD 4
7 7 7 1 7 1 7	固着原理 ^{a)}			IILD Z	TILD 3	IILD 4
石こうボード 厚さ 12,5mm	В	F_{Rd}	[kN]	0,11	0,11	0,11
繊維補強石こうボード 厚さ 12,5mm	А	F_{Rd}	[kN]	0,08	-	-
繊維補強石こうボード 厚さ 2x12,5mm	А	F_{Rd}	[kN]	-	0,17	-
中空レンガ	A / B	F_{Rd}	[kN]	0,21	0,21	-
コンクリート ≥ C16/20	С	F_{Rd}	[kN]	0,35	0,56	0,70

a) 施工手順参照

許容安全荷重 b)

アンカーサイズ				HLD 2	HLD 3	HLD 4
	固着原理 ^{a)}					
石こうボード 厚さ 12,5mm	В	F_Rec	[kN]	0,08	0,08	0,08
繊維補強石こうボード 厚さ 12,5mm	Α	F_Rec	[kN]	0,06	-	-
繊維補強石こうボード 厚さ 2x12,5mm	Α	F_Rec	[kN]	-	0,12	-
中空レンガ	A / B	F_{Rec}	[kN]	0,15	0,15	
コンクリート ≥ C16/20	С	F_{Rec}	[kN]	0,25	0,4	0,5

a) 施工手順参照

材料

材質

名称	材料
スリーブ	ポリアミド PA 6

施工仕様

施工温度

-10°C \sim + 40°C

使用温度範囲

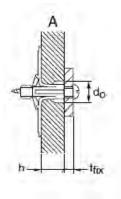
ヒルティ HLD ユニバーサルアンカーは下表の温度範囲で適用として

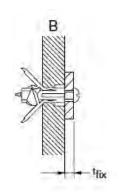
温度範囲	母材温度	長期での最大母材温度	短期での最大母材温度	
温度範囲	-40 °C ∼ +80 °C	+50 °C	+80 °C	

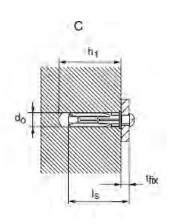
短期での最大母材温度

短期としての高い母材温度は、日中の気温変動などの短い間隔で発生する。

長期での最大母材温度


長期としての高い母材温度は、大きな影響を与える時間が概ね一定に発生する。


施工条件


アンカーサイズ				HLD 2	HLD 3	HLD 4
穿孔径 (ビットの呼び径)		d_{o}	[mm]		10	
穿孔長	(only anchoring principle	h ₁ ≥	[mm]	50	56	66
スクリュー長	(anchoring principle A/B)	I_s	[mm]	$33 + t_{fix}$	$40 + t_{fix}$	$49 + t_{fix}$
スクラユー 艮	(anchoring principle C)	I_s	[mm]	$40 + t_{fix}$	$46 + t_{fix}$	$56 + t_{fix}$
スクリュー径	(anchoring principle A/B) d _s [mm]			4 - 5		
ヘクラユー住	(anchoring principle C)	d_s	[mm]	5 - 6		
	(anchoring principle A)	h	[mm]	4 - 12	15 – 19	24 - 28
壁 / パネル厚	(anchoring principle B)	h	[mm]	12 - 16	19 – 25	28 - 32
	(anchoring principle C)	h		35	42	50

b) 標準耐力の全体的なグローバル安全係数は $\gamma=5$ 、設計値のための部分安全係数は $\gamma=1,4$



標準施工工具

アンカーサイズ	HLD 2	HLD 3	HLD 4	
ロータリーハンマードリル	TE 2- TE16			
その他工具	スクリュードライバー			

施工手順

*詳しい施工方法は、製品パッケージに同封されている手順をご覧ください。

HFP 軽量アンカー

Anchor version		特徴
	LIED (C)	- 乾式壁の軽量物留め付け用
	HFP (-S)	- セルフカッティング
		- 素早い施工

母材

乾式壁

基礎荷重データ

本項の全ての数値は下記条件の場合に適用されます。

- 正しく施工されていること (施工手順参照) へりあき、アンカーピッチの影響なし 母材の指定は表による

許容安全荷重 a)

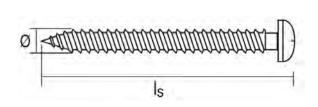
石膏ボード厚			12,5 mm	2 x 12,5 mm
引張 N _{Rec}	HSP (-S)	kN]	0,06 58,1 70,6 70,6	0,12
	HFP (-S)		0,06 55,0	0,12
せん断 V _{Rec}	HSP (-S)	kN]	0,18	0,27
C/UE/I V Rec	HFP (-S)	KIN	0,18	0,27

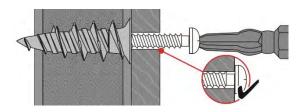
a) 総合的な世界の安全係数は平均荷重に対してγ=3

材料

材料品質

部材	材質
HSP (-S)	ポリアミド, 繊維強化
HFP (-S)	亜鉛ダイカスト
Screw	炭素鋼, 亜鉛めっき 5µm 以上

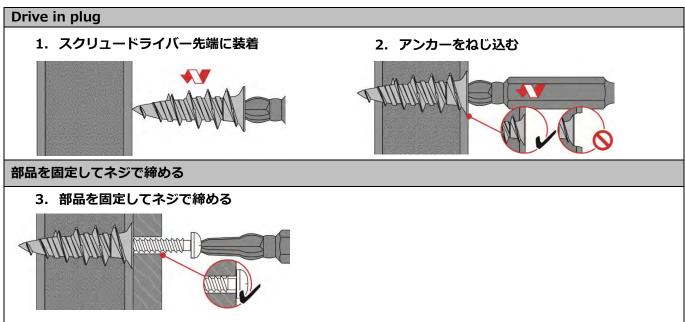

施工情報


施工工具

アンカー	HSP (-S) / HFP (-S)
ロータリーハンマー	-
その他の工具	スクリュードライバーと D-B PH2 HSP/HFP デュオビット

施工詳細 HSP (-S) / HFP (-S)

アンカー			HSP (-S)	HFP (-S)		
最大取付物厚	t _{fix}		13	13		
アンカー長		[mm]	37	37		
スクリュー長	I _s	[111111]	19 + t _{fix}			
スクリュー径 φ	d	-	4,5	4,5		



施工手順

*施工工具の詳細については製品パッケージに記載の使用説明書をご覧ください。

施工手順

HHD-S はさみ固定式金属系アンカー

Anchor version

特徴

HHD-S (M4-M8)

- 乾式壁用のネジ付き金属系アンダ ーカットアンカー
- 金属同士の固定

母材

乾式壁

基礎荷重データ (単体留付けアンカー)

本項の全ての数値は下記条件の場合に適用されます。

- -正しく施工されていること (施工手順参照) -へりあき、アンカーピッチの影響なし
- -母材指定は表による
- -回転のみの穿孔

許容安全荷重 a)

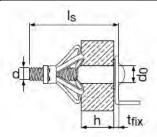
アンカーサイズ			M4	M5	М6	M8
 中空レンガ レンガ厚 20mm	N_{Rd}	[kN]	0,1	-	-	-
ヤエレンカ レンカ序 20IIIII	V_{Rd}	[kN]	0,3	-	-	-
石膏ボード厚 10mm	N_{Rd}	[kN]	0,2	0,2	0,2	0,2
	V_{Rd}	[kN]	0,5	0,5	0,5	0,5
石膏ボード厚 12,5mm	N_{Rd}	[kN]	0,2	0,2	0,2	0,2
	V_{Rd}	[kN]	0,5	0,5	0,5	0,5
石膏ボード厚 2x12,5mm	N_{Rd}	[kN]	-	0,4	0,3	0,4
石貫八一 1/字 2X12,5	V_{Rd}	[kN]	-	1	0,9	1
繊維強化石膏ボード厚 10mm	N_{Rd}	[kN]	0,2	0,3	0,25	0,4
柳桃的出化石首外一下净 10111111	V_{Rd}	[kN]	0,5	0,6	0,8	0,9
繊維強化石膏ボード厚 12,5mm	N_{Rd}	[kN]	0,3	0,5	0,3	0,6
微能强化分割外一下序 12,5000 	V_{Rd}	[kN]	0,6	1	1	1,2
繊維強化石膏ボード厚 2x12,5mm	N_{Rd}	[kN]	-	0,9	0,8	0,9
「大学 とXI2,3IIIII	V_{Rd}	[kN]	-	1,1	1,8	1,7

a) 総合的な世界の安全係数は平均荷重に対して γ = 3 で、部分安全係数は γ = 1,4 です。.

材料

材料品質

部材	材質
スリーブ	炭素鋼, 亜鉛めっき
スクリュー	炭素鋼, 亜鉛めっき

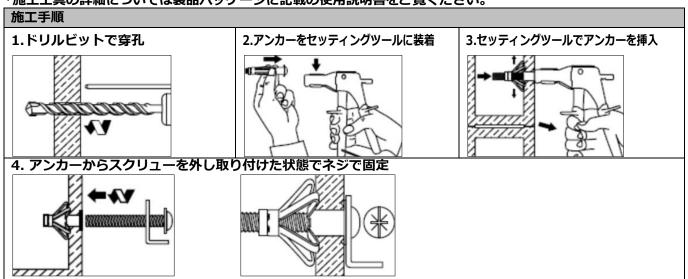

施工条件

施工詳細 HHD-S

Anchor			M4x4	M4x6	M4x12	M4x19	M5x8	M5x12	M5x25
穿孔径(ビット径)	d _o	[mm]	8	8	8	8	10	10	10
アンカー長		[mm]	20	32	38	45	38	52	65
Anchor neck length	h	[mm]	4	6	12,5	19	8	12,5	25
スクリュー長	l _S ≥	[mm]	25	39	45	52	45	58	71
スクリュー径	d	[mm]	M4	M4	M4	M4	M5	M5	M5
パネル厚	h _{min,max}	[mm]	3 - 4	6 - 7	10 - 13	18 - 20	6 - 8	11 - 13	23 - 25
先付けの最大取付物厚	t_{fix}	[mm]	15	25	25	25	25	30	30

施工詳細 HHD-S

Anchor			M6x9	M6x12	M6x24	M6x40	M8x12	M8x24	M8x40
穿孔径(ビット径)	d _o	[mm]	12	12	12	12	12	12	12
アンカー長		[mm]	38	52	65	80	54	66	83
Anchor neck length	h	[mm]	9	12,5	25	40	12,5	25	40
スクリュー長	l _S ≥	[mm]	45	58	71	88	60	72	90
スクリュー径	d	[mm]	M6	M6	M6	M6	M8	M8	M8
パネル厚	h _{min,max}	[mm]	7 - 9	11 - 13	23 - 25	38 - 40	11 - 13	23 - 25	38 - 40
先付けの最大取付物厚	t _{fix}	[mm]	20	30	30	30	30	30	35



標準施工工具

Anchor	M4	M5	M6	M8		
ロータリーハンマー	TE2 - TE16					
その他の工具	スクリュードライバー, HHD-SZ2 拡張ツール					

施工手順

*施工工具の詳細については製品パッケージに記載の使用説明書をご覧ください。

IDP 断熱ファスナー

Anchor version 特徴 - 厚さ 15 cm までの断熱材用 - 簡単な施工 **IDP**

母材

ひび割れを想定しないコンクリート レンガ 中空レンガ

その他の情報

壁用

基礎荷重データ (単体留付けアンカー)

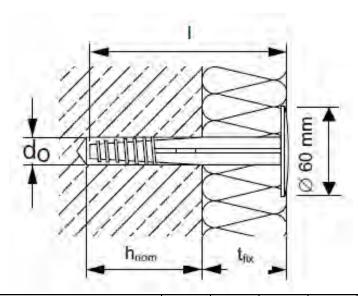
本項の全ての数値は下記条件の場合に適用されます。

- 正しく施工されていること (施工手順参照) へりあき、アンカーピッチの影響なし
- 母材の指定は表による
- 最小母材厚
- 温度が40℃を超える場合は、荷重を減らし、締付の数を増やす

許容安全荷重 a)

母材			IDP
コンクリート ≥ C16/20	N_{rec}	[kN]	0,14
レンガ Mz 20 - 1,8 - NF	N_{rec}	[kN]	0,14
軽量レンガ KS 12 – 1,6 – 2DF	N_{rec}	[kN]	0,14
中空レンガ Hlz 12 – 0,8 – 6DF	N_{rec}	[kN]	0,04 ^{b)}
中空軽量レンガ KSL 12 - 1,4 - 3DF	N_{rec}	[kN]	0,04

- 総合的な世界の安全係数は平均荷重に対して $\gamma=3$ で、部分安全係数は $\gamma=1,4$ です。
- b) 回転のみの穿孔


材料

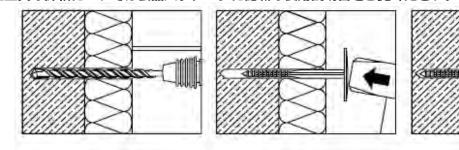
材料品質

部材	材質
Anchor with plate	Polypropylene

施工条件

施工詳細

アンカーサイズ			0/2	2/4	4/6	6/8	8/10	10/12	13/15
穿孔径(ビット径)	d ₀	[mm]				8			
*1	d _{cut} ≤	[mm]				(8,45)		
穿孔長	$h_1 \ge$	[mm]			I - t _{fix} +	- 10mm	ı ≥ 40m	ım	
埋め込み長	h _{nom}	[mm]				25			
アンカー長	I	[mm]	50	70	90	110	130	150	180
最大取付物厚	t_fix	[mm]	20	40	60	80	100	120	150
施工温度		[°C]				0 up to	40		


^{*1} 付録の d_{cut} 説明をご参照ください。

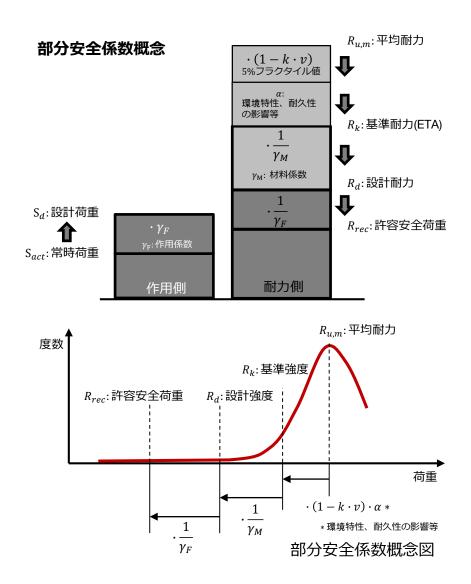
標準施工工具

アンカーサイズ	IDP
ロータリーハンマー	コード: HILTI TE 2 - TE 7 バッテリー: HILTI TE2-A22, TE4-A22, TE6-A36
その他の工具	ハンマー

施工手順*

*施工工具の詳細については製品パッケージに記載の使用説明書をご覧ください。

Drill hole with drill bit.

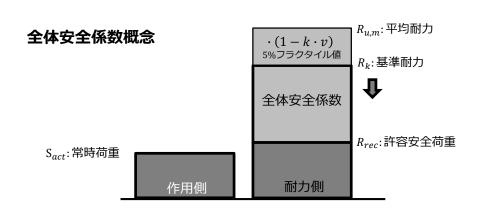

Tap in fastener with a hammer.

アンカー設計

ヒルティのアンカー設計においては、アプリケーションまたはアンカーの種類に応じて、下記の二通りの概念が適用されています。

欧州技術認証基準

(ETAG001又はETAG0202) の部分安全係数概念に準じて欧州技術認証(ETA)がコンクリートに使用されるアンカーとして適用されている。それは、アンカーの設計耐力が設計荷重を超えてはならないとされています。


 $(S_d \le R_d)$

個々のETAにある基準耐力は、 低減係数として、凍結融解、 使用温度、耐アルカリ性(耐 久性)、長期持続引張荷重特 性、その他環境やアプリケー ション条件などが既に考慮さ れています。

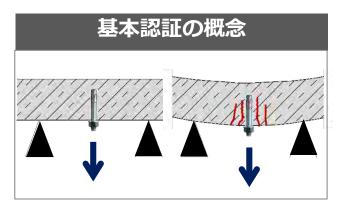
ヒルティでは、設計耐力に一般的作用係数1.4 ($\gamma = 1.4$)を 考慮した許容安全荷重を設定 しています。

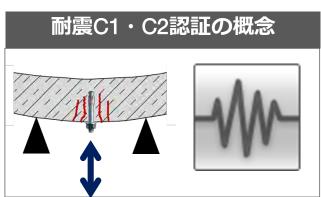
全体安全係数概念においては、 許容安全荷重が常時荷重を超 えてはならないとされていま す。

右図の基準耐力は、標準試験結果から得られる5%フラクタイル値から得ます。全体安全係数には、環境条件やアプリケーション条件が作用側と耐力側に考慮されて、許容安全荷重に至っています。

あと施工アンカーの耐震C1・C2認証について

1. あと施工アンカーの欧州認証とは

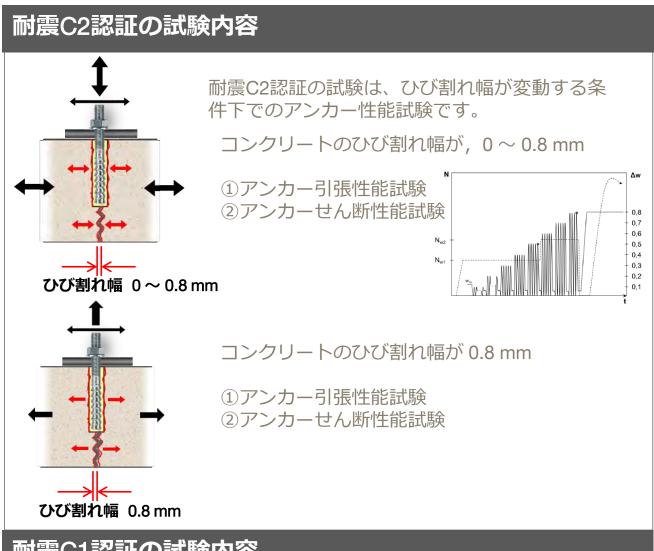

欧州では、アンカーの使用条件と影響要因を考慮した性能設計が行われており,性能評価を受けたアンカー製品が用いられております。
特に、ひび割れが発生した際のアンカーの耐力性能が重視されております。


特に、<mark>ひび割れが発生した際のアンカーの耐力性能</mark>が重視されております。 耐震認証を取得したアンカーは,耐震用アンカーとして非常に多く使用されており ます。

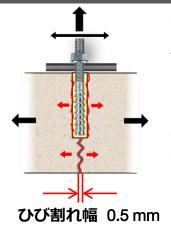
2. 耐震C1・C2認証とは

EOTA(欧州技術認証機構)で制定されたアンカー製品認証です。 耐震C1・C2認証は、ひび割れに対する性能に加え、地震動に対する性能を評価した 認証です。さらに耐震C2認証では、開閉するひび割れも想定しています。

※ここでの「ひび割れ」の定義は、アンカー施工後の使用期間中に、コンクリートに発生するひび割れのことです。


耐震認証の使い分け

設計地	設計地震動		アンカーの対象物と施設の重要度				
地表面加速度	日本の震度	構造	部材	非構造	造部材		
地衣曲/加坯/支	(目安)	重要施設 その他		重要施設	その他		
0.05 G以下	概ね3以下		基本	認証			
0.05 G ~ 0.1 G	概ね4		C2認証		C1認証		
0.1 G を超える	概ね5以上	C2認証					


^{*} イタリアやニュージーランド等の海外の地震国では、耐震認証を取得したアンカーが多く使われています。 設計地震動が高い日本の重要施設では、C2 耐震認証取得アンカーをします。

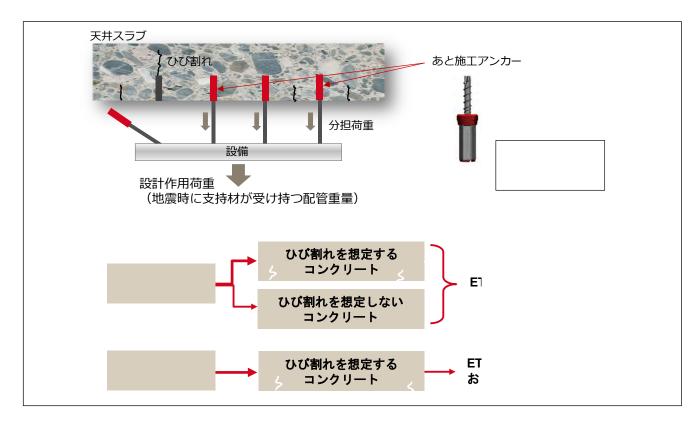
3. 耐震認証に要求される試験方法 (ETAG001 Annex E 2.3.2)

耐震C1認証の試験内容

耐震C1認証は、ひび割れが,アンカーに発生した条 件下での,アンカー性能試験です。

コンクリートのひび割れ幅が 0.5mm

- ①アンカー引張性能試験
- ②アンカーせん断性能試験


	製品名	ETA C1 耐震認証	ETA C2 耐震認証	「ひび割れ」想定する
	HIT-RE 500 V3	√ *1	√ *1	✓
接着系アンカー	HIT-HY 200	√ *1	√ *1	✓
報	HVU2	/ *1	√ *1	✓
	HDA	✓	✓	✓
	HSL-3	✓	✓	✓
金属系アンカ	HST3	✓	✓	✓
(相	HUS3	✓	✓	
	HUS-HR	✓		

リダンダント留付け

複数のアンカーで、長い線状の部材や広い面状の部材を留付ける方法。それぞれのアンカーが荷重を分担し受け持ち、一つのアンカーが破壊に至ったとしても、そのアンカーの分担荷重は隣もしくは他のアンカーが分散して受け持つことで、留付け物の構造全体として致命的損傷にならない安全な留付け方法。

天井スラブでは、コンクリートの経年劣化や地震動による曲げ引張などの要因により、上面および下面にコンクリートのひび割れが発生する可能性が高く、欧米では、リダンダント留付けの考え方により、**分担荷重で安全性を高めるアンカーの設計**が行われています。

リダンダント設計対応 HILTI アンカー製品

アンカー製品	ETA - シングルアンカーファスニング認証	ETA - リダンダントファスニング認証
HUS3-6	ETA-13/1038 of 10 May 2016 (cracked and uncracked)	ETA-10/0005 10 May 2016
HKD	ETA-02/0032 18 October 2012 to 18 October 2017 (only uncracked)	ETA-06/0047 8 Feb 2016
HRD		ETA-07/0219 18 September 2012 to 18 September 2017 (only uncracked)

d_{cut} とは

 d_{cut} は、「 d_0 (穿孔径:ビットの呼び径)のドリルビットによって開けられたコンクリート側の穴径(寸法)」で、下限値 $d_{cut,min}$ (mm)と、上限値 $d_{cut,max}$ (mm)が、ETAG-001 Annex A にて規定されております。

d_{cut}の下限値と上限値は、ドリルビット製造公差の DIN8035 と同じです。

例えば、 d_0 (ビットの呼び径)12.0mm のドリルビットでは、ETAG-001 Annex A、DIN8035 共に下限値 12.1mm~上限値 12.5mm です。

ヒルティ呼び径 12mm のドリルビットは、DIN8035 規格にて製造、ドリルビット公差も DIN8035 規格 (12.1-12.5mm)に準拠しているため、上限値である 12.5mm の穴径が開けられるの最大値として考えます。

